Appendix D—Alternatives Traffic Analysis Technical

 Memo
Part 2

Appendix D—Generalized LOS Tables

12/18/12

TABLE 7 (continued)

INPUT VALUE ASSUMPTIONS	Uninterrupted Flow Facilities		Interrupted Flow Facilities					
			State Arterials			Class II		
								$\stackrel{\square}{E}$

ROADWAY CHARACTERISTICS

Area type (1,o)	1	1	1	1	1	1	1	1	1	1	1	1
Number of through lanes	2-6	1	2-3	1	2-4	1	2-4	1	2-4	2	2	
Posted speed (mph)	65	50	50	45	50	45	45	35	35	45	45	
Free flow speed (mph)	70	55	55	50	55	50	50	40	40	50	50	
Aux, meter, or accel/decel ≥ 1500 (n, y)	n											
Median (n, nr, r)		n	r	n	r	n	r	n	r	r	r	
Terrain (1,r)	1	1	1									
\% no passing zone		80										
Exclusive left turn lanes /[impact](n, y)		[n]	y	y	y	y	y	y	y	y	y	
Exclusive right turn lanes (n, y)				n	n	n	n	n	n	n	n	
Paved shoulder/bicycle lane (n, y)										n, 50%,y	n	
Outside lane width										t	t	
Pavement condition										t		
Sidewalk (n, y)											n, 50\%,y	n, y
Sidewalk/roadway separation (a, t, w)											t	
Sidewalk protective barrier (n, y)											n	
Obstacle to bus stop (n, y)												n
Facility length (mi)	4	5	5	2	2	2	2	2	2	2	2	2
Number of segments	4											

TRAFFIC CHARACTERISTICS

Planning analysis hour factor (K)	0.092	0.094	0.094	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	
Directional distribution factor (D)	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	
Peak hour factor (PHF)	0.95	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	
Base saturation flow rate (pcphpl)		1700	2100	1950	1950	1950	1950	1950	1950	1950	1950	
Heavy vehicle percent	4.0	2.0	2.0	2.0	2.0	2.0	2.0	1.5	1.5	2.0	2.0	
Local adjustment factor	0.98	1.0	0.98									
\% left turns				12	12	12	12	12	12	12	12	
\% right turns				12	12	12	12	12	12	12	12	
Bus span of service												15

CONTROL CHARACTERISTICS

| Number of signals | | | | 2 | 2 | 6 | 6 | 10 | 10 | 6 | 6 | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arrival type (1-6) | | | | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | |
| Signal type (a, s, p) | | | | a | a | s | s | s | s | s | s | |
| Cycle length (C) | | | | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | |
| Effective green ratio (g/C) | | | | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | |

LEVEL OF SERVICE THRESHOLDS

Level of Service	Freeways	Highway Segments		State \& Non-State Signalized Arterials			Bicycle	Pedestrian	Bus
	Density	Two-Lane	Multilane	Class I	Class II	Class III	Score	Score	Buses per hr.
		\%ffs	Density	ats	ats	ats			
B	≤ 17	≥ 0.833	≤ 18	$>34 \mathrm{mph}$	$>28 \mathrm{mph}$	$>24 \mathrm{mph}$	≤ 2.5	≤ 2.5	≥ 4
C	≤ 24	>0.750	≤ 26	$>27 \mathrm{mph}$	$>22 \mathrm{mph}$	$>18 \mathrm{mph}$	≤ 3.5	≤ 3.5	≥ 3
D	≤ 31	>0.667	≤ 35	$>21 \mathrm{mph}$	$>17 \mathrm{mph}$	$>14 \mathrm{mph}$	≤ 4.5	≤ 4.5	≥ 2
E	≤ 39	>0.583	≤ 41	> 16 mph	$>13 \mathrm{mph}$	$>10 \mathrm{mph}$	≤ 5.5	≤ 5.5	≥ 1

[^0]
7.7.1.4 Vertical Alignment

Maximum grades for vertical alignment cannot be as definitively expressed as for highway mainline. The minimum grade is 0.50%. General values of limiting gradient for upgrades are shown in Exhibit 7-26, but for any one ramp the selected gradient is dependent upon a number of factors including:

- The flatter the gradient on the ramp, the longer it will be.
- The steepest gradients should be designed for the center part of the ramp. Landing areas or storage platforms at at-grade intersections with ramps should be as flat as possible.
- Downgrades on ramps should follow the same guidelines as upgrades. They may, however, safely exceed these values by 2 percent, with 8 percent considered the desired maximum grade.
- Ramp gradients and lengths can be significantly impacted by the angle of intersection between the two highways and the direction and amount of gradient on the two mainlines.
- K values and desirable stopping sight distance should meet the minimum design values for vertical curves.

Exhibit 7-26
Ramp Gradient Guidelines

	Ramp Design Speed (mph)			
	20 to 25	25 to 30	30 to 45	$\mathbf{4 5}$ to 50
Maximum Desirable Grades (\%)	$6-8$	$5-7$	$4-6$	$3-5$

Source: MassHighway

7.7.2 Capacity

Exhibit 7-27 provides the volumes for a given ramp design speed and level of service. Although the exhibit indicates that up to 1,700 passenger car equivalents per hour (pcph) can be accommodated on a single-lane ramp, freeway/ramp junctions are not capable of handling this volume; therefore, 1,500 pcph should be used as a threshold to warrant a two-lane ramp.

Exhibit 7-27
Approximate Service Volumes for Single-lane Ramps

	Ramp Design Speed (mph)				
LOS	≤ 20	$20-30$	$30-45$	$45-50$	≥ 50
A	--	--	--	--	700
B	--	--	--	1,000	1050
C	--	--	1,125	1,250	1,300
D	--	1,025	1,200	1,325	1,500
E	1,250	1,450	$1,600^{1}$	$1,650^{1}$	$1,700^{1}$
F			$--W i d e l y ~ V a r i a b l e ~--~$		

Source, Highway Capacity Manual, Washington DC 2000
Note: Based on Peak Hour Factor of 1.0, service volumes expressed in passenger cars per hour.
1 For two-Lane Ramps, Multiply Above Values By 1.7 for < $20 \mathrm{mph}, 1.8$ for $20-30 \mathrm{mph} \& 45-50 \mathrm{mph}, 1.9$ for $30-45 \mathrm{mph}$, and 2.0 for $\geq 50 \mathrm{mph}$
-- LOS not achievable due to restricted design speeds

The minimum radius of a two-lane ramp should be 1,000 feet. The capacity of a loop ramp is about 1,250 pcph; however, two-lane loop ramps are very undesirable because of their restrictive geometry. Therefore, if a left-turn movement will exceed 1,250, a directional or semi-directional connection may be needed. Ramps must be designed with sufficient capacity to avoid backups on the main line. The Highway Capacity Manual further discusses the capacity of ramps.

7.8 Ramp/Minor Road Intersections

At service interchanges the ramp or loop normally intersects the minor road at-grade at approximately a 90-degree angle. This intersection should be treated as described in Chapter 6. This will involve a consideration of the necessary traffic control devices, capacity, and the physical geometric design elements such as sight distance, angle of intersection, grade, channelization, and turning lanes. However, the following points warrant special attention in the design of the ramp/minor road intersection:

- Capacity - In urban areas where traffic volumes may be high, inadequate capacity of the ramp/minor road intersection can adversely affect the operation of the ramp/freeway junction. In a worst case situation the safety and operation of the mainline itself may be impaired by a back-up onto the freeway. Therefore, special attention should be given to providing sufficient capacity and storage for an at-grade intersection with the minor road. This could lead to the addition of lanes at the intersection or on the ramp

Appendix E—Interchange Capacity Screening Inputs and Results

Exit 101 Interchange	Alternative	Existing Interstate		Existing Ramps								Existing Arterial		Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
Existing	Lanes	3	3	1	-	1	1	1	-	1	1	2	2	1.00\%
	AM Peak Vol	4,455	2,327	134	-	262	847	275	-	352	127	1,106	976	Design
	AM LOS	C	B	B	-	B	B	B	-	B	B	D	D	Year
	PM Peak Vol	2,900	4,868	88	-	117	837	401	-	661	229	1,048	1,431	2040
	PM LOS	B	D	B	-	B	B	B	-	C	B	D	D	Arterial
AO45-Tight Urban Diamond	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	Class
	AM Peak Vol	4,455	2,327	396	-	-	847	627	-	-	127	1,106	976	III/IV
	AM LOS	C	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	2,900	4,868	205	-	-	837	1,062	-	-	229	1,048	1,431	
	PM LOS	B	D	B	-	-	B	C	-	-	B	D	D	
AO44 - Roundabout Intersections	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	4,455	2,327	396	-	-	847	627	-	-	127	1,106	976	
	AM LOS	C	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	2,900	4,868	205	-	-	837	1,062	-	-	229	1,048	1,431	
	PM LOS	B	D	B	-	-	B	C	-	-	B	D	D	
AO43 - Diverging Diamond Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	4,455	2,327	396	-	-	847	627	-	-	127	1,106	976	
	AM LOS	C	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	2,900	4,868	205	-	-	837	1,062	-	-	229	1,048	1,431	
	PM LOS	B	D	B	-	-	B	C	-	-	B	D	D	

Exit 101 Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
Existing	Lanes	3	3	1	-	1	1	1	-	1	1	2	2
	AM Peak Vol	5,771	3,015	174	-	340	1,098	357	-	456	165	1,433	1,265
	AM LOS	E	B	B	-	B	C	B	-	B	B	D	D
	PM Peak Vol	3,757	6,306	114	-	152	1,085	520	-	857	297	1,358	1,854
	PM LOS	C	F	B	-	B	C	B	-	D	B	D	F
AO45-Tight Urban Diamond	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	5,771	3,015	513	-	-	1,098	813	-	-	165	1,433	1,265
	AM LOS	E	B	B	-	-	C	B	-	-	B	D	D
	PM Peak Vol	3,757	6,306	266	-	-	1,085	1,376	-	-	297	1,358	1,854
	PM LOS	C	F	B	-	-	C	E	-	-	B	D	F
AO44 Roundabout Intersections	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	5,771	3,015	513	-	-	1,098	813	-	-	165	1,433	1,265
	AM LOS	E	B	B	-	-	C	B	-	-	B	D	D
	PM Peak Vol	3,757	6,306	266	-	-	1,085	1,376	-	-	297	1,358	1,854
	PM LOS	C	F	B	-	-	C	E	-	-	B	D	F
AO43-Diverging Diamond Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	5,771	3,015	513	-	-	1,098	813	-	-	165	1,433	1,265
	AM LOS	E	B	B	-	-	C	B	-	-	B	D	D
	PM Peak Vol	3,757	6,306	266	-	-	1,085	1,376	-	-	297	1,358	1,854
	PM LOS	C	F	B	-	-	C	E	-	-	B	D	F

Exit 102 Interchange	Alternative	Existing Interstate		Existing Ramps								Existing Arterial		Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
Existing	Lanes	3	3	1	-	1	1	1	-	1	1	2	2	1.00\%
	AM Peak Vol	4,906	2,838	319	-	247	716	287	-	467	243	1,347	1,082	
	AM LOS	D	B	B	-	B	B	B	-	C	B	D	D	
	PM Peak Vol	3,532	5,416	193	-	62	757	351	-	606	409	1,191	1,507	
	PM LOS	C	D	B	-	B	B	B	-	C	B	D	E	
AO42 - Tight Urban Diamond	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	2040
	AM Peak Vol	4,906	2,838	566	-	-	716	754	-	-	243	1,347	1,082	Arterial
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	C	Class
	PM Peak Vol	3,532	5,416	255	-	-	757	957	-	-	409	1,191	1,507	II
	PM LOS	C	D	B	-	-	B	B	-	-	B	C	D	
AO41 - Roundabout Intersections	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	4,906	2,838	566	-	-	716	754	-	-	243	1,347	1,082	
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	C	
	PM Peak Vol	3,532	5,416	255	-	-	757	957	-	-	409	1,191	1,507	
	PM LOS	C	D	B	-	-	B	B	-	-	B	C	D	
AO40 - Diverging Diamond Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	4,906	2,838	566	-	-	716	754	-	-	243	1,347	1,082	
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	C	
	PM Peak Vol	3,532	5,416	255	-	-	757	957	-	-	409	1,191	1,507	
	PM LOS	C	D	B	-	-	B	B	-	-	B	C	D	

Exit 102 Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
Existing	Lanes	3	3	1	-	1	1	1	-	1	1	2	2
	AM Peak Vol	6,355	3,676	414	-	320	928	372	-	605	315	1,745	1,402
	AM LOS	F	C	B	-	B	B	B	-	C	B	F	D
	PM Peak Vol	4,575	7,016	250	-	81	981	455	-	785	530	1,543	1,952
	PM LOS	C	F	B	-	B	B	B	-	D	B	E	F
AO42-Tight Urban Diamond	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,355	3,676	734	-	-	928	977	-	-	315	1,745	1,402
	AM LOS	F	C	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	4,575	7,016	331	-	-	981	1,240	-	-	530	1,543	1,952
	PM LOS	C	F	B	-	-	B	C	-	-	B	D	F
AO41 - Roundabout Intersections	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,355	3,676	734	-	-	928	977	-	-	315	1,745	1,402
	AM LOS	F	C	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	4,575	7,016	331	-	-	981	1,240	-	-	530	1,543	1,952
	PM LOS	C	F	B	-	-	B	C	-	-	B	D	F
AO40 - Diverging Diamond Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,355	3,676	734	-	-	928	977	-	-	315	1,745	1,402
	AM LOS	F	C	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	4,575	7,016	331	-	-	981	1,240	-	-	530	1,543	1,952
	PM LOS	C	F	B	-	-	B	C	-	-	B	D	F

Exit 102 (Lake Murray Boulevard) Capacity Assessment

					02 (La	urray B	vard)	acity As	sment					
			Freewa	Segment		rial		EB/SB	Ramps			WB/N	Ramps	
Alternative	Year	Peak Hour	EB (SB)	WB (NB)	EB (SB)	WB (NB)	$\begin{gathered} \text { EB/SB } \\ \text { Off } \end{gathered}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop On } \end{aligned}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop Off } \end{aligned}$	$\begin{gathered} \text { EB/SB } \\ \text { On } \end{gathered}$	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On
	Existing	AM	Under	Under	Under	Under	Under	-	Under	Under	Under	-	Under	Under
		PM	Under	Under	Under	Near	Under	-	Under	Under	Under	-	Under	Under
(AO50)		AM	Over	Under	Over	Under	Under	-	Under	Under	Under	-	Under	Under
	2040	PM	Under	Over	Near	Over	Under	-	Under	Under	Under	-	Under	Under
	sting	AM	Under	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
AO40		PM	Under	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
(DDI)		AM	Over	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Over	Under	Over	Under	-	-	Under	Under	-	-	Under
AO41 (Roundabout)	Existing	AM	Under	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
	2040	AM	Over	Under	Under Under	Under	Under Under	-	-	Under	Under	-	-	Under
		PM	Under	Over		Over		-	-	Under	Under	-	-	Under
$\begin{aligned} & \text { AO42 } \\ & \text { (TUDI) } \end{aligned}$	Existing	AM	Under	Under	Under	Under	Under	-	-	Under	Under Under	-	-	Under
		PM	Under	Under	Under	Under	Under	-	-	Under		-	-	Under
	2040	AM	Over	Under	Under Under	Under	Under Under	-	-	Under	Under	-	-	Under
		PM	Under	Over		Over		-	-	Under		-	-	Under
CAP-X Results			First: Partial Cloverleaf				Second: Displaced Left				Third: Diverging Diamond			

Exit 103 Interchange	Alternative	Existing Interstate		Existing Ramps								Existing	Arterial	Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
Existing	Lanes	3	3	1	-	-	1	1	-	1	1	2	2	1.00\%
	AM Peak Vol	5,056	3,156	105	-	-	586	481	-	481	163	783	915	
	AM LOS	D	B	B	-	-	B	B	-	C	B	D	D	Design
	PM Peak Vol	4,034	5,748	372	-	-	853	800	-	800	468	1,431	1,419	Year
	PM LOS	C	E	B	-	-	B	B	-	D	B	D	D	
AO35-Tight Urban Diamond	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	2040
	AM Peak Vol	5,056	3,156	105	-	-	586	481	-	-	163	783	915	Arterial
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	D	Class
	PM Peak Vol	4,034	5,748	372	-	-	853	800	-	-	468	1,431	1,419	III/IV
	PM LOS	C	E	B	-	-	B	B	-	-	B	D	D	
AO37-Single Point Urban Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	5,056	3,156	105	-	-	586	481	-	-	163	783	915	
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	4,034	5,748	372	-	-	853	800	-	-	468	1,431	1,419	
	PM LOS	C	E	B	-	-	B	B	-	-	B	D	D	
AO38 0 5-leg roundabout	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	5,056	3,156	105	-	-	586	481	-	-	163	783	915	
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	4,034	5,748	372	-	-	853	800	-	-	468	1,431	1,419	
	PM LOS	C	E	B	-	-	B	B	-	-	B	D	D	
AO36 - Diverging Diamond Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	5,056	3,156	105	-	-	586	481	-	-	163	783	915	
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	4,034	5,748	372	-	-	853	800	-	-	468	1,431	1,419	
	PM LOS	C	E	B	-	-	B	B	-	-	B	D	D	

Exit 103 Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
Existing	Lanes	3	3	1	-	-	1	-	-	1	1	2	2
	AM Peak Vol	6,549	4,088	137	-	-	760	-	-	624	212	1,015	1,186
	AM LOS	F	C	B	-	-	B	-	-	C	B	D	D
	PM Peak Vol	5,226	7,446	482	-	-	1,105	-	-	1,037	607	1,854	1,838
	PM LOS	D	F	B	-	-	C	-	-	E	B	F	F
AO35-Tight Urban Diamond	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,549	4,088	137	-	-	760	624	-	-	212	1,015	1,186
	AM LOS	F	C	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	5,226	7,446	482	-	-	1,105	1,037	-	-	607	1,854	1,838
	PM LOS	D	F	B	-	-	C	C	-	-	B	F	F
AO37-Single Point Urban Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,549	4,088	137	-	-	760	624	-	-	212	1,015	1,186
	AM LOS	F	C	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	5,226	7,446	482	-	-	1,105	1,037	-	-	607	1,854	1,838
	PM LOS	D	F	B	-	-	C	C	-	-	B	F	F
AO38 0 5-leg roundabout	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,549	4,088	137	-	-	760	624	-	-	212	1,015	1,186
	AM LOS	F	C	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	5,226	7,446	482	-	-	1,105	1,037	-	-	607	1,854	1,838
	PM LOS	D	F	B	-	-	C	C	-	-	B	F	F
AO36-Diverging Diamond Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,549	4,088	137	-	-	760	624	-	-	212	1,015	1,186
	AM LOS	F	C	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	5,226	7,446	482	-	-	1,105	1,037	-	-	607	1,854	1,838
	PM LOS	D	F	B	-	-	C	C	-	-	B	F	F

					103 (son Bo	rd) Ca	ity Asse	ment					
Alternative	Year	Peak Hour	Freewa	Segment		rial		EB/SB	Ramps			WB/NB	Ramps	
			EB (SB)	WB (NB)	EB (SB)	WB (NB)	EB/SB Off	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop On } \end{aligned}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop Off } \end{aligned}$	$\begin{gathered} \text { EB/SB } \\ \text { On } \end{gathered}$	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	$\begin{gathered} \text { WB/NB } \\ \text { On } \end{gathered}$
Existing No-Build (AO49)	Existing2040	AM	Under	Under	Under	Under	Under	-	-	Under	Under	-	Under	Under
		PM	Under	Near	Under	Under	Under	-	-	Under	Under	-	Under	Under
		AM	Over	Under	Under	Under	Under Under	-	-	Under	-	-	Under	Under
		PM	Under	Over	Over	Over		-	-	Under	-	-	Near	Under
$\begin{aligned} & \text { AO35 } \\ & \text { (TUDI) } \end{aligned}$	Existing	AM	Under	Under	Under Under	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Near		Under	Under	-	-	Under	Under	-	-	Under
		AM	Over	Under	Under	Under	Under Under	-	-	Under	Under	-	-	Under
		PM	Under	Over	Over	Over		-	-	Under	Under	-	-	Under
$\begin{aligned} & \text { AO36 } \\ & \text { (DDI) } \end{aligned}$	Existing	AM	Under Under	Under	Under Under	Under	Under	-	-	Under	Under	-	-	Under
		PM		Near		Under	Under	-	-	Under	Under	-	-	Under
		$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Over	Under	Under	Under	Under Under	-	-	Under	Under	-	-	Under
			Under	Over	Over	Over		-	-	Under	Under	-	-	Under
$\begin{aligned} & \text { AO37 } \\ & \text { (SPUI) } \end{aligned}$	Existing	AM	Under Under	Under	Under Under	Under	Under Under	-	-	Under	Under Under	-	-	Under Under
		PM		Near		Under		-		Under				
	2040	$\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$	Over	Under	Under	Under	Under Under	-	-	Under	Under	-	-	Under
			Under	Over	Over	Over		-	-	Under	Under	- -		Under
AO38 (Roundabout	Existing	AM	Under	Under	Under Under	Under	Under Under	-	-	Under Under	Under Under	-	-	Under Under
		PM	Under	Near		Under							-	
	2040	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	Over	Under	Under	Under	Under Under	-	-	Under	Under Under	-	-	Under Under
			Under	Over	Over	Over				Under				
$\begin{gathered} \text { AO39 } \\ \text { (Offset SPUI) } \end{gathered}$	Existing	AM	Under	Under	Under	Under	Under Under	-	-	Under	Under Under	-	-	Under Under
		PM	Under	Near		Under		-		Under			-	
		AM	Over	Under	Under	Under	Under Under	-	-	Under Under	Under Under	-	-	Under
		PM	Under	Over	Over	Over						-	-	Under
CAP-X Results			First: Partial Cloverleaf				Second: Displaced Left				Third: SPUI			

Exit 104 Interchange	Alternative	Existing Interstate		Existing Ramps								Existing	Arterial	Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
Existing	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	1.00\%
	AM Peak Vol	5,537	3,552	319	-	-	716	287	-	-	243		978	Design
	AM LOS	D	C	B	-	-	B	B	-	-	B	D	D	Design
	PM Peak Vol	4,515	6,028	193	-	-	757	351	-	-	409	856	1,373	
	PM LOS	C	E	B	-	-	B	B	-	-	B	D	D	
AO32-Single Point Urban Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	2040
	AM Peak Vol	5,537	3,552	319	-	-	716	287	-	-	243	973	978	Arterial
	AM LOS	D	C	B	-	-	B	B	-	-	B	D	D	Class
	PM Peak Vol	4,515	6,028	193	-	-	757	351	-	-	409	856	1,373	III/IV
	PM LOS	C	E	B	-	-	B	B	-	-	B	D	D	
AO33 - Roundabouts	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	5,537	3,552	319	-	-	716	287	-	-	243	973	978	
	AM LOS	D	C	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	4,515	6,028	193	-	-	757	351	-	-	409	856	1,373	
	PM LOS	C	E	B	-	-	B	B	-	-	B	D	D	
AO31 - Diverging Diamond Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	5,537	3,552	319	-	-	716	287	-	-	243	973	978	
	AM LOS	D	C	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	4,515	6,028	193	-	-	757	351	-	-	409	856	1,373	
	PM LOS	C	E	B	-	-	B	B	-	-	B	D	D	
$\begin{aligned} & \text { AO30 - Existing - } \\ & \text { with } \\ & \text { improvements } \end{aligned}$	Lanes	3	3	1	-	-	1	1	-	-	1	3	3	
	AM Peak Vol	5,537	3,552	319	-	-	716	287	-	-	243	973	978	
	AM LOS	D	C	B	-	-	B	B	-	-	B	C	C	
	PM Peak Vol	4,515	6,028	193	-	-	757	351	-	-	409	856	1,373	
	PM LOS	C	E	B	-	-	B	B	-	-	B	C	D	

Exit 104 Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
Existing	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	7,172	4,601	414	-	-	928	372	-	-	315	1,261	1,267
	AM LOS	F	D	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	5,849	7,808	250	-	-	981	455	-	-	530	1,109	1,779
	PM LOS	E	F	B	-	-	B	B	-	-	B	D	F
AO32 - Single Point Urban Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	7,172	4,601	414	-	-	928	372	-	-	315	1,261	1,267
	AM LOS	F	D	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	5,849	7,808	250	-	-	981	455	-	-	530	1,109	1,779
	PM LOS	E	F	B	-	-	B	B	-	-	B	D	F
AO33 - Roundabouts	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	7,172	4,601	414	-	-	928	372	-	-	315	1,261	1,267
	AM LOS	F	D	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	5,849	7,808	250	-	-	981	455	-	-	530	1,109	1,779
	PM LOS	E	F	B	-	-	B	B	-	-	B	D	F
AO31 - Diverging Diamond Interchange	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	7,172	4,601	414	-	-	928	372	-	-	315	1,261	1,267
	AM LOS	F	D	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	5,849	7,808	250	-	-	981	455	-	-	530	1,109	1,779
	PM LOS	E	F	B	-	-	B	B	-	-	B	D	F
AO30 - Existing with improvements	Lanes	3	3	1	-	-	1	1	-	-	1	3	3
	AM Peak Vol	7,172	4,601	414	-	-	928	372	-	-	315	1,261	1,267
	AM LOS	F	D	B	-	-	B	B	-	-	B	D	D
	PM Peak Vol	5,849	7,808	250	-	-	981	455	-	-	530	1,109	1,779
	PM LOS	E	F	B	-	-	B	B	-	-	B	D	D

Existing Interstate		Existing Ramps								Existing Arterial		Annual Growth Rate
EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
3	5	1	1	-	1	1	-	1	1	3	3	1.00\%
6,321	4,496	81	909	-	1,180	764	-	363	183	973	978	
F	B	B	D	-	C	B	-	B	B	C	C	
5,023	6,783	287	890	-	696	409	-	627	281	856	1,373	
D	C	B	D	-	B	B	-	C	B	C	D	
3	5	1	-	-	1	1	-	-	1	3	3	2040
6,321	4,496	81	-	-	2,089	1,127	-	-	183	973	978	Arterial
F	B	B	-	-	F	C	-	-	B	C	C	Class
5,023	6,783	287	-	-	1,586	1,036	-	-	281	973	978	III/IV
D	C	B	-	-	E	C	-	-	B	C	C	
3	5	1	-	-	1	1	-	1	1	3	3	
6,321	4,496	81	-	-	2,089	764	-	363	183	973	978	
F	B	B	-	-	F	B	-	B	B	C	C	
5,023	6,783	287	-	-	1,586	409	-	627	281	856	1,373	
D	C	B	-	-	E	B	-	C	B	C	D	
3	3	1	-	-	1	1	-	-	1	2	2	
6,321	4,496	81	-	-	2,089	1,127	-	-	183	973	978	
F	C	B	-	-	F	C	-	-	B	D	D	
5,023	6,783	287	-	-	1,586	1,036	-	-	281	856	1,373	
D	F	B	-	-	E	C	-	-	B	D	D	
3	3	1	-	-	1	1	-	-	1	2	2	
6,321	4,496	81	-	-	2,089	1,127	-	-	183	973	978	
F	C	B	-	-	F	C	-	-	B	D	D	
5,023	6,783	287	-	-	1,586	1,036	-	-	281	856	1,373	
D	F	B	-	-	E	C	-	-	B	D	D	
3	3	1	-	-	1	1	-	-	1	2	2	
6,321	4,496	81	-	-	2,089	1,127	-	-	183	973	978	
F	C	B	-	-	F	C	-	-	B	D	D	
5,023	6,783	287	-	-	1,586	1,036	-	-	281	856	1,373	
D	F	B	-	-	E	C	-	-	B	D	D	
3	3	1	-	-	1	1	-	-	1	2	2	
6,321	4,496	81	-	-	2,089	1,127	-	-	183	973	978	
F	C	B	-	-	F	C	-	-	B	D	D	
5,023	6,783	287	-	-	1,586	1,036	-	-	281	856	1,373	
D	F	B	-	-	E	C	-	-	B	D	D	

Future Interstate		Future Ramp								Future Arterial	
EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
3	5	1	1	-	1	1	-	1	1	3	3
8,188	5,824	105	1,178	-	1,529	990	-	471	238	1,261	1,267
F	C	B	E	-	E	B	-	C	B	D	D
6,507	8,786	372	1,153	-	902	530	-	813	364	1,109	1,779
F	D	B	E	-	B	B	-	D	B	D	D
3	5	1	-	-	1	1	-	-	1	3	3
8,188	5,824	105	-	-	2,706	1,460	-	-	238	1,261	1,267
F	C	B	-	-	F	E	-	-	B	D	D
6,507	8,786	372	-	-	2,055	1,342	-	-	364	1,261	1,267
F	D	B	-	-	F	E	-	-	B	D	D
3	5	1	-	-	1	1	-	1	1	3	3
8,188	5,824	105	-	-	2,706	990	-	471	238	1,261	1,267
F	C	B	-	-	F	B	-	C	B	D	D
6,507	8,786	372	-	-	2,055	530	-	813	364	1,109	1,779
F	D	B	-	-	F	B	-	D	B	D	D
3	3	1	-	-	1	1	-	-	1	2	2
8,188	5,824	105	-	-	2,706	1,460	-	-	238	1,261	1,267
F	E	B	-	-	F	E	-	-	B	D	D
6,507	8,786	372	-	-	2,055	1,342	-	-	364	1,109	1,779
F	F	B	-	-	F	E	-	-	B	D	F
3	3	1	-	-	1	1	-	-	1	3	3
8,188	5,824	105	-	-	2,706	1,460	-	-	238	1,261	1,267
F	E	B	-	-	F	E	-	-	B	D	D
6,507	8,786	372	-	-	2,055	1,342	-	-	364	1,109	1,779
F	F	B	-	-	F	E	-	-	B	D	D
3	3	1	-	-	1	1	-	-	1	3	3
8,188	5,824	105	-	-	2,706	1,460	-	-	238	1,261	1,267
F	E	B	-	-	F	E	-	-	B	D	D
6,507	8,786	372	-	-	2,055	1,342	-	-	364	1,109	1,779
F	F	B	-	-	F	E	-	-	B	D	D
3	3	1	-	-	1	1	-	-	1	3	3
8,188	5,824	105	-	-	2,706	1,460	-	-	238	1,261	1,267
F	E	B	-	-	F	E	-	-	B	D	D
6,507	8,786	372	-	-	2,055	1,342	-	-	364	1,109	1,779
F	F	B	-	-	F	E	-	-	B	D	D

Alternative	Year	Peak Hour	Exit 106 (St Andrews Road) Capacity Assessment								WB/NB Ramps			
			Freeway Segment		Arterial		EB/SB Ramps							
			EB (SB)	WB (NB)	EB (SB)	WB (NB)	$\begin{gathered} \text { EB/SB } \\ \text { Off } \end{gathered}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop On } \end{aligned}$	EB/SB Loop Off	$\begin{gathered} \text { EB/SB } \\ \text { On } \end{gathered}$	WB/NB Off	WB/NB WB/NB		WB/NB On
Existing No-Build	Existing		Over	Under	Under	Under	Under	Under	-	Under	Under	-	Under	Under
		PM	Under	Under	Under	Under	Under	Under	-	Under	Under	-	Under	Under
	2040	AM	Over	Under	Under	Under	Under	Near	-	Near	Under	-	Under	Under
		PM	Over	Under	Under	Under	Under	Near	-	Under	Under	-	Under	Under
$\begin{aligned} & \text { AO11 } \\ & \text { (DDA) } \end{aligned}$	Existing	AM	Over	Under	Under	Under	Under	-	-	Over	Under	-	-	Under
		PM	Under	Over	Under	Under	Under	-	-	Near	Under	-	-	Under
	2040	AM	Over	Near	Under	Under	Under	-	-	Over	Near	-	-	Under
		PM	Over	Over	Under	Over	Under	-	-	Over	Near	-	-	Under
AO12 (Flyover)	Existing	AM	Over	Under	Under	Under	Under	-	-	Over	Under	-	-	Under
		PM	Under	Over	Under	Under	Under	-	-	Near	Under	-	-	Under
	2040	AM	Over	Near	Under	Under	Under	-	-	Over	Near	-	-	Under
		PM	Over	Over	Under	Under	Under	-	-	Over	Near	-	-	Under
$\begin{aligned} & \text { AO13 } \\ & \text { (SPUI) } \end{aligned}$	Existing	AM	Over	Under	Under	Under	Under	-	-	Over	Under	-	-	Under
		PM	Under	Under	Under	Under	Under	-	-	Near	Under	-	-	Under
	2040	AM	Over	Under	Under	Under	Under	-	-	Over	Near	-	-	Under
		PM	Over	Under	Under	Under	Under	-	-	Over	Near	-	-	Under
AO14 (Modified DDI)	Existing	AM	Over	Under	Under	Under	Under	-	-	Over	Under	-	-	Under
		PM	Under	Over	Under	Under	Under	-	-	Near	Under	-	-	Under
	2040	AM	Over	Near	Under	Under	Under	-	-	Over	Near	-	-	Under
		PM	Over	Over	Under	Under	Under	-	-	Over	Near	-	-	Under
$\begin{gathered} \text { AO15 } \\ \text { (DDI - Frontage } \\ \text { Rd) } \end{gathered}$	Existing	AM	Over	Under	Under	Under	Under	-	-	Over	Under	-	-	Under
		PM	Under	Over	Under	Under	Under	-	-	Near	Under	-	-	Under
	2040	AM	Over	Near	Under	Under	Under	-	-	Over	Near	-	-	Under
		PM	Over	Over	Under	Under	Under	-	-	Over	Near	-	-	Under
AO16 (Roundabout)	Existing	AM	Over	Under	Under	Under	Under	-	-	Over	Under	-	Under	Under
		PM	Under	Under	Under	Under	Under	-	-	Near	Under	-	Under	Under
	2040	AM	Over	Under	Under	Under	Under	-	-	Over	Under	-	Under	Under
		PM	Over	Under	Under	Under	Under	-	-	Over	Under	-	Under	Under
CAP-X Results			First: Partial Cloverleaf				Second: Diverging Diamond				Third: Displaced Left			

Exit 107/64 Interchange	Alternative	Existing Interstate		Existing Ramps								Existing Arterial		Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
Existing	Lanes	5	5	1	1	1	1	1	1	1	1	-	-	1.00\%
	AM Peak Vol	8,329	3,816	480	800	1,410	1,300	620	640	460	1,120	-	-	Design
	AM LOS	D	B	B	D	F	D	B	C	B	C	-	-	Year
	PM Peak Vol	6,322	6,693	750	560	1,240	560	700	570	1,190	1,410	-	-	
	PM LOS	C	C	B	C	E	B	B	C	E	E	-	-	
														2040
														Arterial Class
														-

Exit 107/64 Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
	Lanes	5	5	1	1	1	1	1	1	1	1	-	-
	AM Peak Vol	10,789	4,943	622	1,037	1,827	1,684	804	829	596	1,451	-	-
Existing	AM LOS	F	B	B	E	F	F	B	D	C	E	-	-
	PM Peak Vol	8,189	8,670	972	726	1,607	726	907	739	1,542	1,827	-	-
	PM LOS	D	D	B	C	F	B	B	C	F	F	-	-

Exit 108 Interchange	Alternative	Existing Interstate		Existing Ramps								Existing Arterial		Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
Existing	Lanes	5	4	1	1	-	-	2	1	-	-	2	2	1.00\%
	AM Peak Vol	8,539	3,455	176	512	-	-	655	152	-	-	1,424	783	Design
	AM LOS	D	B	B	C	-	-	B	B	-	-	D	D	Year
	PM Peak Vol	5,452	3,942	301	600	-	-	932	247	-	-	962	1,881	
	PM LOS	B	B	B	C	-	-	B	B	-	-	D	F	
AO23-Offset Diamond_2213	Lanes	5	4	1	-	-	1	1	-	-	1	2	2	2040
	AM Peak Vol	8,539	3,455	176	-	-	512	655	-	-	152	1,424	783	Arterial
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	D	Class
	PM Peak Vol	5,452	3,942	301	-	-	600	932	-	-	247	962	1,881	III/IV
	PM LOS	B	B	B	-	-	B	B	-	-	B	D	F	
\|-126_I- 20_Connector_B ushRiver	Lanes	4	2	1	1	-	-	1	-	-	1	2	2	
	AM Peak Vol	8,539	3,455	1,359	1042	-	-	243	-	-	809	1,424	783	
	AM LOS	F	D	E	E	-	-	B	-	-	B	D	D	
	PM Peak Vol	5,452	3,942	1,359	1042	-	-	243	-	-	809	962	1,881	
	PM LOS	C	E	E	E	-	-	B	-	-	B	D	F	
roundabouts	Lanes	3	4	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	8,539	3,455	176	-	-	512	655	-	-	152	1,424	783	
	AM LOS	F	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	5,452	3,942	301	-	-	600	932	-	-	247	962	1,881	
	PM LOS	D	B	B	-	-	B	B	-	-	B	D	F	
DDI	Lanes	3	4	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	8,539	3,455	176	-	-	512	655	-	-	152	1,424	783	
	AM LOS	F	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	5,452	3,942	301	-	-	600	932	-	-	247	962	1,881	
	PM LOS	D	B	B	-	-	B	B	-	-	B	D	F	
Partial Cloverleaf	Lanes	3	4	1	1	-	-	-	-	1	1	2	2	
	AM Peak Vol	8,539	3,455	176	512	-	-	-	-	655	152	1,424	783	
	AM LOS	F	B	B	C	-	-	-	-	C	B	D	D	
	PM Peak Vol	5,452	3,942	301	600	-	-	-	-	932	247	962	1,881	
	PM LOS	D	B	B	C	-	-	-	-	D	B	D	F	

Exit 108 Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
Existing	Lanes	5	4	1	1	-	-	2	1	-	-	2	2
	AM Peak Vol	11,061	4,476	228	664	-	-	849	197	-	-	1,845	1,015
	AM LOS	F	C	B	C	-	-	B	B	-	-	F	D
	PM Peak Vol	7,062	5,106	390	778	-	-	1,208	320	-	-	1,247	2,437
	PM LOS	C	C	B	D	-	-	B	B	-	-	D	F
AO23 - Offset Diamond_2213	Lanes	5	4	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	11,061	4,476	228	-	-	664	849	-	-	197	1,845	1,015
	AM LOS	F	C	B	-	-	B	B	-	-	B	F	D
	PM Peak Vol	7,062	5,106	390	-	-	778	1,208	-	-	320	1,247	2,437
	PM LOS	C	C	B	-	-	B	C	-	-	B	D	F
\|-126_I- 20_Connector_B ushRiver	Lanes	4	2	1	1	-	-	1	-	-	1	2	2
	AM Peak Vol	11,061	4,476	1,761	1,350	-	-	315	-	-	1,048	1,845	1,015
	AM LOS	F	F	F	F	-	-	B	-	-	C	F	D
	PM Peak Vol	7,062	5,106	1,761	1,350	-	-	315	-	-	1,048	1,247	2,437
	PM LOS	D	F	F	F	-	-	B	-	-	C	D	F
roundabouts	Lanes	3	4	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	11,061	4,476	228	-	-	664	849	-	-	197	1,845	1,015
	AM LOS	F	C	B	-	-	B	B	-	-	B	F	D
	PM Peak Vol	7,062	5,106	390	-	-	778	1,208	-	-	320	1,247	2,437
	PM LOS	F	C	B	-	-	B	C	-	-	B	D	F
DDI	Lanes	3	4	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	11,061	4,476	228	-	-	664	849	-	-	197	1,845	1,015
	AM LOS	F	C	B	-	-	B	B	-	-	B	F	D
	PM Peak Vol	7,062	5,106	390	-	-	778	1,208	-	-	320	1,247	2,437
	PM LOS	F	C	B	-	-	B	C	-	-	B	D	F
Partial Cloverleaf	Lanes	3	4	1	1	-	-	-	-	1	1	2	2
	AM Peak Vol	11,061	4,476	228	664	-	-	-	-	849	197	1,845	1,015
	AM LOS	F	C	B	C	-	-	-	-	D	B	F	D
	PM Peak Vol	7,062	5,106	390	778	-	-	-	-	1,208	320	1,247	2,437
	PM LOS	F	C	B	D	-	-	-	-	E	B	D	F

Alternative	Year	Peak Hour	Exit 108 (Bush River Road) Capacity Assessment								WB/NB Ramps			
			Freeway Segment		Arterial		EB/SB Ramps							
			EB (SB)	WB (NB)	EB (SB)	WB (NB)	$\begin{gathered} \text { EB/SB } \\ \text { Off } \end{gathered}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop On } \end{aligned}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop Off } \end{aligned}$	$\begin{gathered} \text { EB/SB } \\ \text { On } \end{gathered}$	WB/NB Off	WB/NB Loop On	$\begin{aligned} & \text { WB/NB } \\ & \text { Loop Off } \end{aligned}$	$\begin{gathered} \text { WB/NB } \\ \text { On } \end{gathered}$
Existing No-Build	Existing	AM	Under	Under	Under	Under	Under	Under	-	-	Under	Under	-	-
		PM	Under	Under	Under	Over	Under	Under	-	-	Under	Under	-	-
	2040	AM	Over	Under	Over	Under	Under	Under	-	-	Under	Under	-	-
		PM	Under	Under	Under	Over	Under	Under	-	-	Under	Under	-	-
AO23 (Offset Diamond)	Existing	AM	Under	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Under	Over	Under	-	-	Under	Under	-	-	Under
	2040	AM	Over	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Under	Over	Under	-	-	Under	Under	-	-	Under
CAP-X Results			Not Evaluated				Not Evaluated				Not Evaluated			

108B Interchange	Alternative	Existing Interstate		Existing Ramps								Existing Arterial		Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
	Lanes	4	4	2	1	3	-	2	2	1	1	-	-	1.00\%
	AM Peak Vol	8,363	3,455	3,127	270	5,236	-	2,280	1,074	310	520	-	-	
Existing	AM LOS	E	B	D	B	D	-	D	E	B	B	-	-	Design
	PM Peak Vol	5,151	3,942	2,790	560	2,361	-	2,690	2,756	1,000	320	-	-	
	PM LOS	C	B	C	C	B	-	E	F	D	B	-	-	
														2040
														Arterial Class
														-

108B Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
	Lanes	4	4	2	1	3	1	1	1	1	1	-	-
	AM Peak Vol	10,833	4,476	4,051	350	6,782	-	2,954	1,392	402	674	-	-
Existing	AM LOS	F	C	F	B	F	B	F	F	B	B	-	-
	PM Peak Vol	6,672	5,106	3,614	726	3,059	-	3,485	3,570	1,296	415	-	-
	PM LOS	D	C	D	C	B	B	F	F	F	B	-	-

Exit 110 Interchange	Alternative	Existing Interstate		Existing Ramps								Existing Arterial		Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
Existing	Lanes	3	3	1	-	-	1	1	-	-	1	2	2	1.00\%
	AM Peak Vol	3,909	3,506	978	-	-	681	901	-	-	850	2,010	1,786	Design
	AM LOS	C	C	B	-	-	B	B	-	-	B	F	F	
	PM Peak Vol	3,950	3,908	783	-	-	826	901	-	-	820	1,838	1,844	
	PM LOS	C	C	B	-	-	B	B	-	-	B	F	F	
AO46-Sunset Blvd Exit	Lanes	4	3	2	-	-	1	1	-	-	1	2	2	2040
	AM Peak Vol	3,909	3,506	978	-	-	681	901	-	-	850	2,010	1,786	Arterial
	AM LOS	B	C	B	-	-	B	B	-	-	B	F	F	Class
	PM Peak Vol	3,950	3,908	783	-	-	826	901	-	-	820	1,838	1,844	III/IV
	PM LOS	B	C	B	-	-	B	B	-	-	B	F	F	
AO47-Hospital Connector	Lanes	4	3	2	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	3,909	3,506	978	-	-	681	901	-	-	850	2,010	1,786	
	AM LOS	B	C	B	-	-	B	B	-	-	B	F	F	
	PM Peak Vol	3,950	3,908	783	-	-	826	901	-	-	820	1,838	1,844	
	PM LOS	B	C	B	-	-	B	B	-	-	B	F	F	

Exit 110 Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
Existing	Lanes	3	3	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	5,064	4,542	1,267	-	-	883	1,168	-	-	1,101	2,604	2,314
	AM LOS	D	C	D	-	-	B	C	-	-	C	F	F
	PM Peak Vol	5,117	5,062	1,015	-	-	1,070	1,168	-	-	1,063	2,381	2,389
	PM LOS	D	D	C	-	-	C	C	-	-	C	F	F
AO46-Sunset Blvd Exit	Lanes	4	3	2	-	-	1	1	-	-	1	2	2
	AM Peak Vol	5,064	4,542	1,267	-	-	883	1,168	-	-	1,101	2,604	2,314
	AM LOS	C	C	B	-	-	B	C	-	-	C	F	F
	PM Peak Vol	5,117	5,062	1,015	-	-	1,070	1,168	-	-	1,063	2,381	2,389
	PM LOS	C	D	B	-	-	C	C	-	-	C	F	F
AO47 - Hospital Connector	Lanes	4	3	2	-	-	1	1	-	-	1	2	2
	AM Peak Vol	5,064	4,542	1,267	-	-	883	1,168	-	-	1,101	2,604	2,314
	AM LOS	C	C	B	-	-	B	C	-	-	C	F	F
	PM Peak Vol	5,117	5,062	1,015	-	-	1,070	1,168	-	-	1,063	2,381	2,389
	PM LOS	C	D	B	-	-	C	C	-	-	C	F	F

Alternative	Year	Peak Hour	Exit 110 (Sunset Boulevard - US 378) Capacity Assessment								WB/NB Ramps			
			Freeway Segment		Arterial		EB/SB Ramps							
			EB (SB)	WB (NB)	EB (SB)	WB (NB)	$\begin{gathered} \text { EB/SB } \\ \text { Off } \end{gathered}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop On } \end{aligned}$	EB/SB Loop Off	$\begin{aligned} & \text { EB/SB } \\ & \text { On } \end{aligned}$	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	$\begin{gathered} \text { WB/NB } \\ \text { On } \end{gathered}$
Existing No-Build	Existing	AM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
	2040	AM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
AO46 (EB Ramp Extension)	Existing	AM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
	2040	AM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
AO47 (EB Direct Hospital Access)	Existing	AM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
	2040	AM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Over	Over	Under	-	-	Under	Under	-	-	Under
CAP-X Results			First: Partial Cloverleaf				Second: DDI				Third: Displaced Left			

Exit 63 Interchange	Alternative	Existing Interstate		Existing Ramps								Existing Arterial		Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
Existing	Lanes	3	4	1	1	-	1	1	-	-	1	2	2	1.00\%
	AM Peak Vol	5,145	2,693	911	359	-	96	528	-	-	354	1,374	726	
	AM LOS	D	B	B	B	-	B	B	-	-	B	D	D	Design
	PM Peak Vol	3,245	4,388	675	417	-	130	484	-	-	780	1,300	1,608	Year
	PM LOS	B	B	B	B	-	B	B	-	-	B	D	E	
AO7-Offset Diamond	Lanes	3	4	1	-	-	1	1	-	-	1	2	2	2040
	AM Peak Vol	5,145	2,693	911	-	-	455	528	-	-	354	1,374	726	Arterial
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	D	Class
	PM Peak Vol	3,245	4,388	675	-	-	547	484	-	-	780	1,300	1,608	III/IV
	PM LOS	B	B	B	-	-	B	B	-	-	B	D	E	
AO10 - Single Point Urban Interchange	Lanes	3	4	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	5,145	2,693	911	-	-	455	528	-	-	354	1,374	726	
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	3,245	4,388	675	-	-	547	484	-	-	780	1,300	1,608	
	PM LOS	B	B	B	-	-	B	B	-	-	B	D	E	
AO9 - Roundabouts	Lanes	3	4	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	5,145	2,693	911	-	-	455	528	-	-	354	1,374	726	
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	3,245	4,388	675	-	-	547	484	-	-	780	1,300	1,608	
	PM LOS	B	B	B	-	-	B	B	-	-	B	D	E	
AO6 - Diverging Diamond Interchange	Lanes	3	4	1	-	-	1	1	-	-	1	2	2	
	AM Peak Vol	5,145	2,693	911	-	-	455	528	-	-	354	1,374	726	
	AM LOS	D	B	B	-	-	B	B	-	-	B	D	D	
	PM Peak Vol	3,245	4,388	675	-	-	547	484	-	-	780	1,300	1,608	
	PM LOS	B	B	B	-	-	B	B	-	-	B	D	E	
AO8 - Partial Cloverleaf	Lanes	3	4	1	1	-	-	-	-	1	1	2	2	
	AM Peak Vol	5,145	2,693	911	455	-	-	-	-	528	354	1,374	726	
	AM LOS	D	B	B	B	-	-	-	-	C	B	D	D	
	PM Peak Vol	3,245	4,388	675	547	-	-	-	-	484	780	1,300	1,608	
	PM LOS	B	B	B	C	-	-	-	-	C	B	D	E	

Exit 63 Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
Existing	Lanes	3	4	1	1	-	1	1	-	-	1	2	2
	AM Peak Vol	6,665	3,489	1,180	465	-	125	684	-	-	459	1,780	941
	AM LOS	F	B	C	C	-	B	B	-	-	B	F	D
	PM Peak Vol	4,204	5,684	875	541	-	169	627	-	-	1,011	1,684	2,083
	PM LOS	C	C	B	C	-	B	B	-	-	C	E	F
AO7-Offset Diamond	Lanes	3	4	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,665	3,489	1,180	-	-	590	684	-	-	459	1,780	941
	AM LOS	F	B	C	-	-	B	B	-	-	B	F	D
	PM Peak Vol	4,204	5,684	875	-	-	709	627	-	-	1,011	1,684	2,083
	PM LOS	C	C	B	-	-	B	B	-	-	C	E	F
AO10-Single Point Urban Interchange	Lanes	3	4	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,665	3,489	1,180	-	-	590	684	-	-	459	1,780	941
	AM LOS	F	B	C	-	-	B	B	-	-	B	F	D
	PM Peak Vol	4,204	5,684	875	-	-	709	627	-	-	1,011	1,684	2,083
	PM LOS	C	C	B	-	-	B	B	-	-	C	E	F
AO9 - Roundabouts	Lanes	3	4	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,665	3,489	1,180	-	-	590	684	-	-	459	1,780	941
	AM LOS	F	B	C	-	-	B	B	-	-	B	F	D
	PM Peak Vol	4,204	5,684	875	-	-	709	627	-	-	1,011	1,684	2,083
	PM LOS	C	C	B	-	-	B	B	-	-	C	E	F
AO6 - Diverging Diamond Interchange	Lanes	3	4	1	-	-	1	1	-	-	1	2	2
	AM Peak Vol	6,665	3,489	1,180	-	-	590	684	-	-	459	1,780	941
	AM LOS	F	B	C	-	-	B	B	-	-	B	F	D
	PM Peak Vol	4,204	5,684	875	-	-	709	627	-	-	1,011	1,684	2,083
	PM LOS	C	C	B	-	-	B	B	-	-	C	E	F
AO8 - Partial Cloverleaf	Lanes	3	4	1	1	-	-	-	-	1	1	2	2
	AM Peak Vol	6,665	3,489	1,180	590	-	-	-	-	684	459	1,780	941
	AM LOS	F	B	C	C	-	-	-	-	C	B	F	D
	PM Peak Vol	4,204	5,684	875	709	-	-	-	-	627	1,011	1,684	2,083
	PM LOS	C	C	B	C	-	-	-	-	C	C	E	F

Alternative	Year	Peak Hour	Exit 63 (Bush River Road) Capacity Assessment								WB/NB Ramps			
			Freeway Segment		Arterial		EB/SB Ramps							
			EB (SB)	WB (NB)	EB (SB)	WB (NB)	$\begin{gathered} \text { EB/SB } \\ \text { Off } \end{gathered}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop On } \end{aligned}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop Off } \end{aligned}$	$\begin{gathered} \text { EB/SB } \\ \text { On } \end{gathered}$	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On
Existing No-Build	Existing	AM	Under	Under	Under	Under	Under	Under	-	Under	Under	-	-	Under
		PM	Under	Under	Under	Near	Under	Under	-	Under	Under	-	-	Under
	2040	AM	Over	Under	Over	Under	Under	Under	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Over	Under	Under	-	Under	Under	-	-	Under
$\begin{aligned} & \text { AO } 6 \\ & \text { (DDI) } \end{aligned}$	Existing	AM	Under	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Under	Near	Under	-	-	Under	Under	-	-	Under
	2040	AM	Over	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Over	Under	-	-	Under	Under	-	-	Under
AO 7 (Offset Diamond)	Existing	AM	Under	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Under	Near	Under	-	-	Under	Under	-	-	Under
	2040	AM	Over	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Over	Under	-	-	Under	Under	-	-	Under
AO 8 (Partial Cloverleaf)	Existing	AM	Under	Under	Under	Under	Under	Under	-	-	-	-	Under	Under
		PM	Under	Under	Under	Near	Under	Under	-	-	-	-	Under	Under
	2040	AM	Over	Under	Over	Under	Under	Under	-	-	-	-	Under	Under
		PM	Under	Under	Near	Over	Under	Under	-	-	-	-	Under	Under
$\begin{gathered} \text { AO } 9 \\ \text { (Roundabout) } \end{gathered}$	Existing	AM	Under	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Under	Near	Under	-	-	Under	Under	-	-	Under
	2040	AM	Over	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Over	Under	-	-	Under	Under	-	-	Under
$\begin{aligned} & \text { AO } 10 \\ & \text { (SPUI) } \end{aligned}$	Existing	AM	Under	Under	Under	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Under	Near	Under	-	-	Under	Under	-	-	Under
	2040	AM	Over	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Over	Under	-	-	Under	Under	-	-	Under
CAP-X Results			First: Partial Cloverleaf				Second: SPUI				Third: Displaced Left			

Exit 65 Interchange	Alternative	Existing Interstate		Existing Ramps								Existing Arterial		Annual Growth Rate
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB	
Existing	Lanes	3	3	1	-	-	1	2	-	-	1	2	2	1.00\%
	AM Peak Vol	4,779	4,622	363	-	-	988	1,254	-	-	305	2,085	904	
	AM LOS	D	D	B	-	-	B	B	-	-	B	F	D	Design
	PM Peak Vol	3,927	5,490	266	-	-	993	1,352	-	-	280	1,590	1,591	
	PM LOS	C	D	B	-	-	B	B	-	-	B	E	E	
AO4 - Stacked Diamond Asymmetrical	Lanes	3	3	1	-	-	1	2	-	-	1	2	2	2040
	AM Peak Vol	4,779	4,622	363	-	-	988	1,254	-	-	305	2,085	904	Arterial
	AM LOS	D	D	B	-	-	B	B	-	-	B	F	D	Class
	PM Peak Vol	3,927	5,490	266	-	-	993	1,352	-	-	280	1,590	1,591	III/IV
	PM LOS	C	D	B	-	-	B	B	-	-	B	E	E	
AO3-Single Point Urban Interchange	Lanes	3	3	1	-	-	1	2	-	-	1	2	2	
	AM Peak Vol	4,779	4,622	363	-	-	988	1,254	-	-	305	2,085	904	
	AM LOS	D	D	B	-	-	B	B	-	-	B	F	D	
	PM Peak Vol	3,927	5,490	266	-	-	993	1,352	-	-	280	1,590	1,591	
	PM LOS	C	D	B	-	-	B	B	-	-	B	E	E	
AO2 - Roundabouts	Lanes	3	3	1	-	-	1	2	-	-	1	2	2	
	AM Peak Vol	4,779	4,622	363	-	-	988	1,254	-	-	305	2,085	904	
	AM LOS	D	D	B	-	-	B	B	-	-	B	F	D	
	PM Peak Vol	3,927	5,490	266	-	-	993	1,352	-	-	280	1,590	1,591	
	PM LOS	C	D	B	-	-	B	B	-	-	B	E	E	
AO1-Diverging Diamond Interchange	Lanes	3	4	1	-	-	1	2	-	-	1	2	2	
	AM Peak Vol	4,779	4,622	363	-	-	988	1,254	-	-	305	2,085	904	
	AM LOS	D	C	B	-	-	B	B	-	-	B	F	D	
	PM Peak Vol	3,927	5,490	266	-	-	993	1,352	-	-	280	1,590	1,591	
	PM LOS	C	C	B	-	-	B	B	-	-	B	E	E	
AO5-Stacked Diamond - Offse Lefts	Lanes	3	3	1	-	-	1	2	-	-	1	2	2	
	AM Peak Vol	4,779	4,622	363	-	-	988	1,254	-	-	305	2,085	904	
	AM LOS	D	D	B	-	-	B	B	-	-	B	F	D	
	PM Peak Vol	3,927	5,490	266	-	-	993	1,352	-	-	280	1,590	1,591	
	PM LOS	C	D	B	-	-	B	B	-	-	B	E	E	

Exit 65 Interchange	Alternative	Future Interstate		Future Ramp								Future Arterial	
		EB/SB	WB/NB	EB/SB Off	EB/SB Loop On	EB/SB Loop Off	EB/SB On	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	WB/NB On	EB/SB	WB/NB
Existing	Lanes	3	3	1	-	-	1	2	-	-	1	2	2
	AM Peak Vol	6,191	5,987	471	-	-	1,280	1,625	-	-	396	2,701	1,171
	AM LOS	E	E	B	-	-	D	B	-	-	B	F	D
	PM Peak Vol	5,087	7,111	345	-	-	1,287	1,752	-	-	363	2,060	2,061
	PM LOS	D	F	B	-	-	D	B	-	-	B	F	F
AO4 - Stacked Diamond Asymmetrical	Lanes	3	3	1	-	-	1	2	-	-	1	2	2
	AM Peak Vol	6,191	5,987	471	-	-	1,280	1,625	-	-	396	2,701	1,171
	AM LOS	E	E	B	-	-	D	B	-	-	B	F	D
	PM Peak Vol	5,087	7,111	345	-	-	1,287	1,752	-	-	363	2,060	2,061
	PM LOS	D	F	B	-	-	D	B	-	-	B	F	F
AO3-Single Point Urban Interchange	Lanes	3	3	1	-	-	1	2	-	-	1	2	2
	AM Peak Vol	6,191	5,987	471	-	-	1,280	1,625	-	-	396	2,701	1,171
	AM LOS	E	E	B	-	-	D	B	-	-	B	F	D
	PM Peak Vol	5,087	7,111	345	-	-	1,287	1,752	-	-	363	2,060	2,061
	PM LOS	D	F	B	-	-	D	B	-	-	B	F	F
AO2 - Roundabouts	Lanes	3	3	1	-	-	1	2	-	-	1	2	2
	AM Peak Vol	6,191	5,987	471	-	-	1,280	1,625	-	-	396	2,701	1,171
	AM LOS	E	E	B	-	-	D	B	-	-	B	F	D
	PM Peak Vol	5,087	7,111	345	-	-	1,287	1,752	-	-	363	2,060	2,061
	PM LOS	D	F	B	-	-	D	B	-	-	B	F	F
AO1-Diverging Diamond Interchange	Lanes	3	3	1	-	-	1	2	-	-	1	2	2
	AM Peak Vol	6,191	5,987	471	-	-	1,280	1,625	-	-	396	2,701	1,171
	AM LOS	E	E	B	-	-	D	B	-	-	B	F	D
	PM Peak Vol	5,087	7,111	345	-	-	1,287	1,752	-	-	363	2,060	2,061
	PM LOS	D	F	B	-	-	D	B	-	-	B	F	F
AO5 - Stacked Diamond - Offset Lefts	Lanes	3	3	1	-	-	1	2	-	-	1	2	2
	AM Peak Vol	6,191	5,987	471	-	-	1,280	1,625	-	-	396	2,701	1,171
	AM LOS	E	E	B	-	-	D	B	-	-	B	F	D
	PM Peak Vol	5,087	7,111	345	-	-	1,287	1,752	-	-	363	2,060	2,061
	PM LOS	D	F	B	-	-	D	B	-	-	B	F	F

Alternative	Year	Peak Hour	Exit 65 (Broad River Road) Capacity Assessment								WB/NB Ramps			
			Freeway Segment		Arterial		EB/SB Ramps							
			EB (SB)	WB (NB)	EB (SB)	WB (NB)	$\begin{gathered} \text { EB/SB } \\ \text { Off } \end{gathered}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop On } \end{aligned}$	$\begin{aligned} & \text { EB/SB } \\ & \text { Loop Off } \end{aligned}$	$\begin{gathered} \text { EB/SB } \\ \text { On } \end{gathered}$	WB/NB Off	WB/NB Loop On	WB/NB Loop Off	$\begin{gathered} \text { WB/NB } \\ \text { On } \end{gathered}$
Existing No-Build	Existing	AM	Under	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Near	Under	-	-	Under	Under	-	-	Under
	2040	AM	Near	Near	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Over	Over	Over	Under	-	-	Under	Under	-	-	Under
$\begin{aligned} & \text { AO1 } \\ & \text { (DDI) } \end{aligned}$	Existing	AM	Under	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Near	Under	-	-	Under	Under	-	-	Under
	2040	AM	Near	Near	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Over	Over	Over	Under	-	-	Under	Under	-	-	Under
AO2 (Roundabout)	Existing	AM	Under	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Near	Under	-	-	Under	Under	-	-	Under
	2040	AM	Near	Near	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Over	Over	Over	Under	-	-	Under	Under	-	-	Under
$\begin{gathered} \text { AO3 } \\ \text { (SPUI) } \end{gathered}$	Existing	AM	Under	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Near	Under	-	-	Under	Under	-	-	Under
	2040	AM	Near	Near	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Over	Over	Over	Under	-	-	Under	Under	-	-	Under
AO4 (Stacked Diamond)	Existing	AM	Under	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Near	Under	-	-	Under	Under	-	-	Under
	2040	AM	Near	Near	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Over	Over	Over	Under	-	-	Under	Under	-	-	Under
AO5 (Offset Left)	Existing	AM	Under	Under	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Under	Near	Near	Under	-	-	Under	Under	-	-	Under
		AM	Near	Near	Over	Under	Under	-	-	Under	Under	-	-	Under
		PM	Under	Over	Over	Over	Under	-	-	Under	Under	-	-	Under
CAP-X Results			First: Partial Cloverleaf				Second: Displaced Left				Third: SPUI			

Appendix F-Summary of Link Flow, Speed, and Observed Queues

EB Ramp Volume							
Ramp Location	7:15-8:15 AM				Condition Range Target		Within Range
	Segment	Input	Output	GEH			
1-26							
Exit 101 (Broad River Road) off ramp (WB)	4758	127	116	0	227	27	TRUE
Exit 101 (Broad River Road) off ramp (EB)	4754	256	238	1	356	156	TRUE
Exit 101 (Broad River Road) on ramp	4747	847	1,141	5	974	720	FALSE
Exit 102 (Lake Murray Boulevard) off ramp (WB)	4749	319	289	1	419	219	TRUE
Exit 102 (Lake Murray Boulevard) off ramp (EB)	4735	247	294	1	347	147	TRUE
Exit 102 (Lake Murray Boulevard) on ramp	4724	720	810	2	828	612	TRUE
Exit 103 (Harbison Boulevard) off ramp	4556	105	127	1	205	5	TRUE
Exit 103 (Harbison Boulevard) on ramp	4713	586	599	0	686	486	TRUE
Exit 104 (Piney Grove Road) off ramp	4582	134	158	1	234	34	TRUE
Exit 104 (Piney Grove Road) on ramp	4686	906	959	1	1,042	770	TRUE
Exit 106 (St. Andrews Road) off ramp	4671	81	139	3	181	-19	TRUE
Exit 106 (St. Andrews Road) EB on	4664	909	875	1	1,045	773	TRUE
Exit 106 (St. Andrews Road) on ramp	4648	1,120	1,196	1	1,288	952	TRUE
Exit 107 (to WB I-20) off ramp	4655	480	550	2	580	380	TRUE
Exit 107 (from WB I-20) on ramp	4640	790	917	2	909	672	FALSE
Exit 107 (to EB I-20) off ramp	4644	1,410	1,554	2	1,622	1,199	TRUE
Exit 107 (from EB I-20) on ramp	6214	1,300	1,293	0	1,495	1,105	TRUE
Exit 108 (Bush River Road) off ramp	4620	324	350	1	424	224	TRUE
Exit 108 (Bush River Road) on ramp	8584	512	580	1	612	412	TRUE
Exit 108 (from/to l-126) off ramp	8583	270	441	5	370	170	FALSE
Exit 110 (US 378 - Sunset Boulevard) off ramp	6179	978	935	1	1,125	831	TRUE
Exit 110 (US 378 - Sunset Boulevard) on ramp	6168	702	737	1	807	597	TRUE
1-20							
Exit 61 (US 378 - Sunset Boulevard) off ramp	2827	864	823	1	994	734	TRUE
Exit 61 (US 378 - Sunset Boulevard) on ramp (WB)	2833	674	675	0	774	574	TRUE
Exit 61 (US 378 - Sunset Boulevard) on ramp (EB)	2821	1,163	1,136	0	1,337	989	TRUE
Exit 63 (Bush River Road) off ramp	2849	911	918	0	1,048	774	TRUE
Exit 63 (Bush River Road) on ramp	2862	99	93	0	199	-1	TRUE
Exit 63 (Bush River Road) on ramp (EB)	2853	367	349	0	467	267	TRUE
Exit 64 (to EB I-26) off ramp	6214	1,300	1,293	0	1,495	1,105	TRUE
Exit 64 (from EB I-26) on ramp	4644	1,410	1,554	2	1,622	1,199	TRUE
Exit 64 (to WB I-26) off ramp	6224	640	615	0	740	540	TRUE
Exit 64 (from WB I-26) on ramp	6203	619	621	0	719	519	TRUE
Exit 65 (Broad River Road) off ramp	6235	363	438	2	463	263	TRUE
Exit 65 (Broad River Road) on ramp	6240	1,014	971	1	1,166	862	TRUE
Exit 68 (Monticello Road) off ramp	6252	736	781	1	846	626	TRUE
Exit 68 (Monticello Road) on ramp	7270	530	460	2	630	430	TRUE
1-126							
From WB I-26 / to WB I-26/I-20	8581	589	657	1	689	489	TRUE
From / To Colonial Life Boulevard	4592	530	471	1	630	430	TRUE
Greystone Boulevard off ramps	4580	588	530	1	688	488	TRUE
Greystone Boulevard on ramps	4571	530	474	1	630	430	TRUE

Link Flows Comparison

WB Ramp Volume							
Ramp Location	7:15-8:15 AM				Condition Range Target		Within Range
	Segment	Input	Output	GEH			
1-26							
Exit 101 (Broad River Road) off ramp (WB)	4752	362	396	1	462	262	TRUE
Exit 101 (Broad River Road) off ramp (EB)	4740	287	232	2	387	187	TRUE
Exit 101 (Broad River Road) on ramp	4759	132	120	1	232	32	TRUE
Exit 102 (Lake Murray Boulevard) off ramp (WB)	4731	484	439	1	584	384	TRUE
Exit 102 (Lake Murray Boulevard) off ramp (EB)	4734	348	346	0	448	248	TRUE
Exit 102 (Lake Murray Boulevard) on ramp	4743	243	249	0	343	143	TRUE
Exit 103 (Harbison Boulevard) off ramp	4709	472	606	3	572	372	FALSE
Exit 103 (Harbison Boulevard) on ramp	4596	158	106	2	258	58	TRUE
Exit 104 (Piney Grove Road) off ramp	4680	617	700	2	717	517	TRUE
Exit 104 (Piney Grove Road) on ramp	4699	251	381	4	351	151	FALSE
Exit 106 (St. Andrews Road) off ramp	4652	764	690	1	879	649	TRUE
Exit 106 (St. Andrews Road) WB off ramp	4658	342	374	1	442	242	TRUE
Exit 106 (St. Andrews Road) on ramp	4674	188	171	1	288	88	TRUE
Exit 107 (to WB I-20) off ramp	4645	460	509	1	560	360	TRUE
Exit 107 (from WB I-20) on ramp	4647	1,122	1,070	1	1,290	954	TRUE
Exit 107 (to EB I-20) off ramp	6203	619	621	0	719	519	TRUE
Exit 107 (from EB I-20) on ramp	6224	640	615	0	740	540	TRUE
Exit 108 (Bush River Road) off ramp	6080	655	458	4	755	555	FALSE
Exit 108 (Bush River Road) on ramp	4607	462	604	3	562	362	FALSE
Exit 108 (from/to I-126) off ramp	8581	520	657	3	620	420	FALSE
Exit 110 (US 378 - Sunset Boulevard) off ramp	6162	901	922	0	1,036	766	TRUE
Exit 110 (US 378 - Sunset Boulevard) on ramp	6173	832	916	1	957	707	TRUE
1-20							
Exit 61 (US 378 - Sunset Boulevard) off ramp	2841	1,104	1,137	0	1,270	938	TRUE
Exit 61 (US 378 - Sunset Boulevard) on ramp (WB)	2824	191	206	1	291	91	TRUE
Exit 61 (US 378 - Sunset Boulevard) on ramp (EB)	2820	138	143	0	238	38	TRUE
Exit 63 (Bush River Road) off ramp	2861	528	611	2	628	428	TRUE
Exit 63 (Bush River Road) on ramp	2851	342	406	2	442	242	TRUE
Exit 64 (to EB I-26) off ramp	4647	1,122	1,070	1	1,290	954	TRUE
Exit 64 (from EB I-26) on ramp	4655	480	550	2	580	380	TRUE
Exit 64 (to WB I-26) off ramp	4640	790	917	2	909	672	FALSE
Exit 64 (from WB I-26) on ramp	4645	460	509	1	560	360	TRUE
Exit 65 (Broad River Road) off ramp	6244	1,210	1,312	1	1,392	1,029	TRUE
Exit 65 (Broad River Road) on ramp	6233	307	266	1	407	207	TRUE
Exit 68 (Monticello Road) off ramp	6262	441	469	1	541	341	TRUE
Exit 68 (Monticello Road) on ramp	6250	484	503	0	584	384	TRUE
1-126							
From WB I-26 / to WB I-26/I-20	4602	332	405	2	432	232	TRUE
To SB (EB) I-26	6184	316	442	3	416	216	FALSE
From / To Colonial Life Boulevard	4597	243	326	2	343	143	TRUE
Greystone Boulevard off ramps	4568	449	466	0	549	349	TRUE
Greystone Boulevard on ramps	4585	321	429	3	421	221	FALSE

Carolina Crossroads
Link Flows Comparison

EB Mainline Volume							
Mainline Location	7:15-8:15 AM				Condition Range Target		Within Range
	Segment	Input	Output	GEH			
1-26							
W of Exit 101	8784	4,509	4,366	1	4,909	4,109	TRUE
Exit 101-Exit 102	4748	4,960	5,146	1	5,360	4,560	TRUE
Exit 102-Exit 103	4720	5,110	5,094	0	5,510	4,710	TRUE
Exit 103-Exit 104	4707	5,591	5,345	2	5,991	5,191	TRUE
Exit 104-Exit 106	8552	6,375	5,849	3	6,775	5,975	FALSE
Exit 106-Exit 107	4650	8,383	7,611	4	8,783	7,983	FALSE
Exit 107-Exit 108	4624	8,539	7,668	5	8,939	8,139	FALSE
I-26 to I-26	4612	3,062	2,640	4	3,462	2,662	FALSE
1-26 to Exit 110	8553	3,322	3,596	2	3,722	2,922	TRUE
E of Exit 110	6152	3,035	3,355	3	3,435	2,635	TRUE
1-20							
W of Exit 61	2807	4,158	4,353	1	4,558	3,758	TRUE
Exit 61-Exit 63	8542	5,145	5,304	1	5,545	4,745	TRUE
Exit 63-Exit 64	6216	4,689	4,808	1	5,089	4,289	TRUE
Exit 64-Exit 65	6208	4,779	5,055	2	5,179	4,379	TRUE
Exit 65-Exit 68	8659	5,404	5,545	1	5,804	5,004	TRUE
E of Exit 68	6259	4,968	5,198	2	5,368	4,568	TRUE
I-126							
I-126 Split to Colonial Life Blvd	4609	4,790	4,662	1	5,190	4,390	TRUE
Colonial Life Blvd to Greystone Blvd	4578	5,320	5,768	3	5,720	4,920	FALSE
Greystone to Huger St.	8560	5,320	5,705	3	5,720	4,920	TRUE

Carolina Crossroads
Link Flows Comparison

WB Mainline Volume							
Mainline Location	7:15-8:15 AM				Condition Range Target		Within Range
	Station	Input	Output	GEH			
1-26							
W of Exit 101	4761	2,667	2,510	2	3,067	2,267	TRUE
Exit 101-Exit 102	4739	3,167	3,052	1	3,567	2,767	TRUE
Exit 102-Exit 103	4726	3,678	3,597	1	4,078	3,278	TRUE
Exit 103-Exit 104	4701	3,996	4,098	1	4,396	3,596	TRUE
Exit 104-Exit 106	4677	4,392	4,432	0	4,792	3,992	TRUE
Exit 106-Exit 107	4651	5,336	5,339	0	5,736	4,936	TRUE
Exit 107-Exit 108	6200	4,683	4,799	1	5,083	4,283	TRUE
I-26 to I-26	4604	2,280	2,452	2	2,622	1,938	TRUE
1-26 to Exit 110	6175	3,455	3,579	1	3,855	3,055	TRUE
E of Exit 110	8773	3,506	3,592	1	3,906	3,106	TRUE
1-20							
W of Exit 61	2814	1,664	1,728	1	1,914	1,414	TRUE
Exit 61-Exit 63	8539	2,439	2,524	1	2,805	2,073	TRUE
Exit 63-Exit 64	2859	2,613	2,730	1	3,005	2,221	TRUE
Exit 64-Exit 65	6230	3,563	3,663	1	3,963	3,163	TRUE
Exit 65-Exit 68	8658	4,512	4,729	2	4,912	4,112	TRUE
E of Exit 68	8770	4,469	4,731	2	4,869	4,069	TRUE
1-126							
I-126 Split to Colonial Life Blvd	4601	2,494	2,149	4	2,868	2,120	TRUE
Colonial Life Blvd to Greystone Blvd	4587	2,737	2,929	2	3,137	2,337	TRUE
Greystone to Huger St.	4566	2,863	2,966	1	3,263	2,463	TRUE

Carolina Crossroads
Link Flows Comparison

EB Ramp Volume							
Ramp Location	4:45-5:45 PM				Condition Range Target		Within Range
	Segment	Input	Output	GEH			
I-26							
Exit 101 (Broad River Road) off ramp (WB)	4758	88	81	0	188	-12	TRUE
Exit 101 (Broad River Road) off ramp (EB)	4754	117	108	0	217	17	TRUE
Exit 101 (Broad River Road) on ramp	4747	837	756	1	963	711	TRUE
Exit 102 (Lake Murray Boulevard) off ramp (WB)	4749	193	189	0	293	93	TRUE
Exit 102 (Lake Murray Boulevard) off ramp (EB)	4735	62	58	0	162	-38	TRUE
Exit 102 (Lake Murray Boulevard) on ramp	4724	757	636	2	871	643	FALSE
Exit 103 (Harbison Boulevard) off ramp	4556	372	276	3	472	272	TRUE
Exit 103 (Harbison Boulevard) on ramp	4713	857	711	3	986	728	FALSE
Exit 104 (Piney Grove Road) off ramp	4582	272	179	3	372	172	TRUE
Exit 104 (Piney Grove Road) on ramp	4686	780	823	1	897	663	TRUE
Exit 106 (St. Andrews Road) off ramp	4671	287	339	1	387	187	TRUE
Exit 106 (St. Andrews Road) EB on	4664	890	723	3	1,024	757	FALSE
Exit 106 (St. Andrews Road) on ramp	4648	696	648	1	796	596	TRUE
Exit 107 (to WB I-20) off ramp	4655	750	784	1	863	638	TRUE
Exit 107 (from WB I-20) on ramp	4640	560	574	0	660	460	TRUE
Exit 107 (to EB I-20) off ramp	4644	1,240	1,206	0	1,426	1,054	TRUE
Exit 107 (from EB I-20) on ramp	6214	560	683	2	660	460	FALSE
Exit 108 (Bush River Road) off ramp	4620	340	444	3	440	240	FALSE
Exit 108 (Bush River Road) on ramp	8584	638	684	1	738	538	TRUE
Exit 108 (from/to I-126) off ramp	8583	560	607	1	660	460	TRUE
Exit 110 (US 378 - Sunset Boulevard) off ramp	6179	783	603	3	900	666	FALSE
Exit 110 (US 378 - Sunset Boulevard) on ramp	6168	826	809	0	950	702	TRUE
1-20							
Exit 61 (US 378 - Sunset Boulevard) off ramp	2827	315	307	0	415	215	TRUE
Exit 61 (US 378 - Sunset Boulevard) on ramp (WB)	2833	493	367	3	593	393	FALSE
Exit 61 (US 378 - Sunset Boulevard) on ramp (EB)	2821	709	609	2	815	603	TRUE
Exit 63 (Bush River Road) off ramp	2849	675	589	2	775	575	TRUE
Exit 63 (Bush River Road) on ramp	2862	130	149	1	230	30	TRUE
Exit 63 (Bush River Road) on ramp (EB)	2853	419	452	1	519	319	TRUE
Exit 64 (to EB I-26) off ramp	6214	560	683	2	660	460	FALSE
Exit 64 (from EB I-26) on ramp	4644	1,240	1,206	0	1,426	1,054	TRUE
Exit 64 (to WB I-26) off ramp	6224	570	560	0	670	470	TRUE
Exit 64 (from WB I-26) on ramp	6203	700	670	1	805	595	TRUE
Exit 65 (Broad River Road) off ramp	6235	266	427	4	366	166	FALSE
Exit 65 (Broad River Road) on ramp	6240	1,018	899	2	1,171	865	TRUE
Exit 68 (Monticello Road) off ramp	6252	478	469	0	578	378	TRUE
Exit 68 (Monticello Road) on ramp	7270	609	522	2	709	509	TRUE
1-126							
From WB I-26 / to WB I-26/I-20	8581	280	269	0	380	180	TRUE
From / To Colonial Life Boulevard	4592	308	285	1	408	208	TRUE
Greystone Boulevard off ramps	4580	503	407	2	603	403	TRUE
Greystone Boulevard on ramps	4571	535	538	0	635	435	TRUE

Link Flows Comparison

WB Ramp Volume							
Ramp Location	4:45-5:45 PM				Condition Range Target		Within Range
	Segment	Input	Output	GEH			
1-26							
Exit 101 (Broad River Road) off ramp (WB)	4752	661	527	3	761	561	FALSE
Exit 101 (Broad River Road) off ramp (EB)	4740	401	333	2	501	301	TRUE
Exit 101 (Broad River Road) on ramp	4759	229	193	1	329	129	TRUE
Exit 102 (Lake Murray Boulevard) off ramp (WB)	4731	606	478	3	706	506	FALSE
Exit 102 (Lake Murray Boulevard) off ramp (EB)	4734	351	314	1	451	251	TRUE
Exit 102 (Lake Murray Boulevard) on ramp	4743	409	234	5	509	309	FALSE
Exit 103 (Harbison Boulevard) off ramp	4709	800	628	3	920	680	FALSE
Exit 103 (Harbison Boulevard) on ramp	4596	468	369	2	568	368	TRUE
Exit 104 (Piney Grove Road) off ramp	4680	693	592	2	793	593	FALSE
Exit 104 (Piney Grove Road) on ramp	4699	413	429	0	513	313	TRUE
Exit 106 (St. Andrews Road) off ramp	4652	470	370	2	570	370	FALSE
Exit 106 (St. Andrews Road) WB off ramp	4658	632	527	2	732	532	FALSE
Exit 106 (St. Andrews Road) on ramp	4674	256	214	1	356	156	TRUE
Exit 107 (to WB I-20) off ramp	4645	1,190	1,083	2	1,369	1,012	TRUE
Exit 107 (from WB I-20) on ramp	4647	1,410	1,372	1	1,622	1,199	TRUE
Exit 107 (to EB I-20) off ramp	6203	700	670	1	805	595	TRUE
Exit 107 (from EB I-20) on ramp	6224	570	560	0	670	470	TRUE
Exit 108 (Bush River Road) off ramp	6080	932	750	3	1,072	792	FALSE
Exit 108 (Bush River Road) on ramp	4607	1,247	1,084	2	1,434	1,060	TRUE
Exit 108 (from/to I-126) off ramp	8581	280	269	0	380	180	TRUE
Exit 110 (US 378 - Sunset Boulevard) off ramp	6162	787	740	1	905	669	TRUE
Exit 110 (US 378 - Sunset Boulevard) on ramp	6173	820	899	1	943	697	TRUE
1-20							
Exit 61 (US 378 - Sunset Boulevard) off ramp	2841	1,737	1,353	5	1,998	1,476	FALSE
Exit 61 (US 378 - Sunset Boulevard) on ramp (WB)	2824	355	302	1	455	255	TRUE
Exit 61 (US 378 - Sunset Boulevard) on ramp (EB)	2820	209	202	0	309	109	TRUE
Exit 63 (Bush River Road) off ramp	2861	460	564	2	560	360	FALSE
Exit 63 (Bush River Road) on ramp	2851	840	770	1	966	714	TRUE
Exit 64 (to EB I-26) off ramp	4647	1,410	1,372	1	1,622	1,199	TRUE
Exit 64 (from EB I-26) on ramp	4655	750	784	1	863	638	TRUE
Exit 64 (to WB I-26) off ramp	4640	560	574	0	660	460	TRUE
Exit 64 (from WB I-26) on ramp	4645	1,190	1,083	2	1,369	1,012	TRUE
Exit 65 (Broad River Road) off ramp	6244	1,556	1,482	1	1,789	1,323	TRUE
Exit 65 (Broad River Road) on ramp	6233	284	377	3	384	184	TRUE
Exit 68 (Monticello Road) off ramp	6262	358	374	0	458	258	TRUE
Exit 68 (Monticello Road) on ramp	6250	776	708	1	892	660	TRUE
1-126							
From WB I-26 / to WB I-26/I-20	4602	828	559	5	952	704	FALSE
To SB (EB) I-26	6184	560	609	1	660	460	TRUE
From / To Colonial Life Boulevard	4597	812	734	1	934	690	TRUE
Greystone Boulevard off ramps	4568	645	641	0	745	545	TRUE
Greystone Boulevard on ramps	4585	634	615	0	734	534	TRUE

Carolina Crossroads
Link Flows Comparison

EB Mainline Volume							
Mainline Location	4:45-5:45 PM				Condition Range Target		Within Range
	Segment	Input	Output	GEH			
1-26							
W of Exit 101	8784	2,900	3,046	1	3,300	2,500	TRUE
Exit 101-Exit 102	4748	3,532	3,650	1	3,932	3,132	TRUE
Exit 102-Exit 103	4720	4,034	4,064	0	4,434	3,634	TRUE
Exit 103-Exit 104	4707	4,515	4,521	0	4,915	4,115	TRUE
Exit 104-Exit 106	8552	5,023	5,220	1	5,423	4,623	TRUE
Exit 106-Exit 107	4650	6,322	6,317	0	6,722	5,922	TRUE
Exit 107-Exit 108	4624	5,452	5,473	0	5,852	5,052	TRUE
I-26 to I-26	4612	2,790	2,531	3	3,190	2,390	TRUE
1-26 to Exit 110	8553	3,950	3,604	3	4,350	3,550	TRUE
E of Exit 110	6152	3,993	3,906	1	4,393	3,593	TRUE
1-20							
W of Exit 61	2807	2,452	2,482	0	2,820	2,084	TRUE
Exit 61-Exit 63	8542	3,144	3,204	1	3,544	2,744	TRUE
Exit 63-Exit 64	6216	3,228	3,207	0	3,628	2,828	TRUE
Exit 64-Exit 65	6208	3,639	3,895	2	4,039	3,239	TRUE
Exit 65-Exit 68	8659	4,391	4,374	0	4,791	3,991	TRUE
E of Exit 68	6259	4,522	4,439	1	4,922	4,122	TRUE
I-126							
I-126 Split to Colonial Life Blvd	4609	2,681	2,401	3	3,083	2,279	TRUE
Colonial Life Blvd to Greystone Blvd	4578	3,037	2,994	0	3,437	2,637	TRUE
Greystone to Huger St.	8560	3,069	3,121	0	3,469	2,669	TRUE

Carolina Crossroads
Link Flows Comparison

WB Mainline Volume							
Mainline Location	4:45-5:45 PM				Condition Range Target		Within Range
	Station	Input	Output	GEH			
l-26							
W of Exit 101	4761	5,083	4,135	7	5,483	4,683	FALSE
Exit 101-Exit 102	4739	5,916	5,034	6	6,316	5,516	FALSE
Exit 102-Exit 103	4726	6,464	5,696	5	6,864	6,064	FALSE
Exit 103-Exit 104	4701	6,796	5,967	5	7,196	6,396	FALSE
Exit 104-Exit 106	4677	7,076	6,128	6	7,476	6,676	FALSE
Exit 106-Exit 107	4651	6,306	6,832	3	6,706	5,906	FALSE
Exit 107-Exit 108	6200	6,216	6,811	4	6,616	5,816	FALSE
I-26 to I-26	4604	2,690	2,545	1	3,094	2,287	TRUE
1-26 to Exit 110	6175	3,942	3,968	0	4,342	3,542	TRUE
E of Exit 110	8773	4,023	4,026	0	4,423	3,623	TRUE
1-20							
W of Exit 61	2814	3,422	3,490	1	3,822	3,022	TRUE
Exit 61-Exit 63	8539	4,558	4,434	1	4,958	4,158	TRUE
Exit 63-Exit 64	2859	4,547	4,198	3	4,947	4,147	TRUE
Exit 64-Exit 65	6230	4,577	4,415	1	4,977	4,177	TRUE
Exit 65-Exit 68	8658	5,649	5,677	0	6,049	5,249	TRUE
E of Exit 68	8770	5,231	5,389	1	5,631	4,831	TRUE
1-126							
I-126 Split to Colonial Life Blvd	4601	5,364	3,910	11	5,764	4,964	FALSE
Colonial Life Blvd to Greystone Blvd	4587	6,099	5,690	3	6,499	5,699	FALSE
Greystone to Huger St.	4566	6,110	6,054	0	6,510	5,710	TRUE

I-26 Segment Speed Comparison

Location	Eastbound					Westbound				
	Segment	AM Peak		PM Peak		Segment	AM Peak		PM Peak	
	ID	INRIX	Model	INRIX	Model	ID	INRIX	Model	INRIX	Model
west of Exit 101 (Broad River Road)	4768	69	64	70	69	8783	65	69	63	66
Exit 101 to Exit 102 (Lake Murray Boulevard)	4748	46	59	65	61	4739	66	61	64	61
Exit 102 to Exit 103 (Harbison Boulevard)	4720	39	41	62	59	4726	64	61	62	53
Exit 103 to Exit 104 (Piney Grove Road)	4707	43	27	60	53	4701	63	61	50	54
Exit 104 to Exit 106 (St. Andrews Road)	8552	52	30	60	45	4677	62	53	24	43
Exit 106 to Exit 107 (I-20)	4650	50	23	54	44	4651	59	46	24	17
1-26 to l-26	4612	52	45	57	44	4604	53	44	20	14
Exit 108 to Exit 110 (Sunset Boulevard)	8553	60	63	55	63	6175	65	64	32	41
southeast of Exit 110	6152	63	65	60	64	8773	66	65	59	64

I-20 Segment Speed Comparison

Location	Eastbound					Westbound				
	Segment	AM Peak		PM Peak		Segment	AM Peak		PM Peak	
	ID	INRIX	Model	INRIX	Model	ID	INRIX	Model	INRIX	Model
west of Exit 61 (Sunset Boulevard)	2807	63	63	68	65	2814	67	66	52	52
Exit 61 to Exit 63 (Bush River Road)	8542	65	60	68	64	8539	65	62	41	56
Exit 63 to Exit 64 (1-26)	6216	61	60	55	61	2859	65	61	45	57
Exit 64 to Exit 65 (Broad River Road)	6208	66	61	63	57	6230	64	57	43	38
Exit 65 to Exit 68 (Monticello Road)	8659	63	58	63	62	8658	67	62	54	48
east of Exit 68	6259	66	61	66	62	8770	67	62	52	59

I-126 Segment Speed Comparison

Location	Eastbound					Westbound				
	Segment	AM Peak		PM Peak		Segment	AM Peak		PM Peak	
	ID	INRIX	Model	INRIX	Model	ID	INRIX	Model	INRIX	Model
1-26 to Colonial Life Blvd	4594	65	58	65	64	4599	64	59	23	22
Colonial Life Blvd to Greystone Blvd	4578	66	59	66	62	4587	65	62	39	35
Greystone Blvd to Huger St	8560	60	57	62	62	4566	63	64	61	61

Observations from the I-20/26/77 Corridor Management Plan Study

Interstate Segment		Eastbound Observations	Westbound Observations
I-26	Columbia Avenue to US 176	--	--
I-26	US 176 to US 76/US 176	--	AM Peak: Traffic is moving at free flow speeds. But the ramp merging area is not being utilized. Recent construction extended the lane but traffic is merging too quickly. Most WB traffic get in fast lane to avoid ramp traffic. PM Peak:
1-26	US 76/US 176 to Lake Murray Boulevard	AM Peak: Congested, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 30-40 mph. PM Peak:	AM Peak: Peak: Congested, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 30-40 mph.
I-26	Lake Murray Boulevard to Harbison Boulevard	AM Peak: Congested, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 20-30 mph. PM Peak:	AM Peak: Peak: Congested, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 20-30 mph.
1-26	Harbison Boulevard to Piney Grove Road	AM Peak: Congested, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 20-30 mph. PM Peak:	AM Peak: Peak: Congested traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 20-30 mph.
1-26	Piney Grove Road to Saint Andrews Road	AM Peak: Congested traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 15-20 mph. PM Peak:	AM Peak: Peak: Congested traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 15-20 mph.
1-26	Saint Andrews Road to 20	AM Peak: Congested traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 15-20 mph. PM Peak: Within the past year congested has started heavily in the middle lane, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 10-15 mph.	AM Peak: PM Peak: Heavily congested stop and go traffic.
1-26	I-20 to Bush River Road	AM Peak: Heavily Congested traffic, but is not typically stop and go. Traffic moves less than free flow speed, approximately 10-15 mph. PM Peak: Within the past year congested has started heavily in the middle lane, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately $10-15 \mathrm{mph}$.	AM Peak: PM Peak: Heavily congested stop and go traffic. Ramp to Bush River Rd. backs up as well bu may just be a timing issue.

Observations from the I-20/26/77 Corridor Management Plan Study

Interstate Segment		Eastbound Observations	Westbound Observations
I-26	Bush River Road to I- 126	AM Peak: Heavily Congested traffic, but is not typically stop and go. Traffic moves less than free flow speed, approximately 10-15 mph. PM Peak: Within the past year congested has started heavily in the middle lane, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 10-15 mph. Merge on-ramp to l-26 EB from Bush River Rd. backs up about half the length of the ramp.	AM Peak: PM Peak: Heavily congested stop and go traffic.
I-26	I-126 to Sunset Boulevard	AM Peak: Heavily Congested traffic, but is not typically stop and go. Traffic moves less than free flow speed, approximately 10-15 mph. PM Peak: Congested, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 30-40 mph. Offramp to Sunset Blvd backs up about the full length of the ramp.	AM Peak: PM Peak: Heavily congested stop and go traffic from the beginning of the bridge through the fly over to I-26 WB.
I-26	Sunset Boulevard to Augusta Road	AM Peak: PM Peak: Off-ramp to WB August Rd backs up on about half or the ramp.	--

Observations from the I-20/26/77 Corridor Management Plan Study

Interstate Segment		Eastbound Observations	Westbound Observations
I-20	Sunset Boulevard to Bush River Road	AM Peak: Congested, but traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 40-50 mph PM Peak: --	AM Peak: PM Peak: Congestion starts at Bush River Rd and is stop and goes all the way to the Sunset Blvd. interchange. This is due in part from the lane drop around MM 61.5. There are plans to begin construction in the next 4 months to add the third lane from MM 61.5 to MM 49.
I-20	Bush River Road to $1-26$	AM Peak: Congested traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 40-50 mph. Peak:	AM Peak: PM Peak: Congested after onramps from l-26, but traffic is not typically stop and go. Traffic is approimately moving at 30-40 mph.
I-20	I-26 to Broad River Road	AM Peak: Congested traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 40-50 mph. PM Peak:	AM Peak: PM Peak: Heavily congested traffic is typically stop and go. On-ramp to l-26 WB backs up onto l-20.
I-20	Broad River Road to Monticello Road	AM Peak: Congested traffic is not typically stop and go. Traffic moves less than free flow speed, approximately 40-50 mph. The offramp to Monticello Rd backs up but it under construction to widened the ramp to two lanes. PM Peak:	AM Peak: PM Peak: Congested to about a mile west of Monticello Rd., but not stop and go. Typically traffic is not at free-flow speed but moving at appromiately 4050 mph. Off-ramp to Broad River Rd. can get congested due to traffic on Broad River Rd.

Observations from the I-20/26/77 Corridor Management Plan Study

Interstate Segment		Eastbound Observations	Westbound Observations
I-126	I-26 to Colonial Life Boulevard	AM Peak: Heavily Congested traffic, but is not typically stop and go. Traffic moves less than free flow speed, approximately 10-15 mph.	AM Peak: PM Peak: Heavily congested stop and go traffic.
I-126	Colonial Life Boulevard to Greystone Boulevard	AM Peak: Heavily Congested traffic, but is not typically stop and go. Traffic moves less than free flow speed, approximately $20-30$ mph.	AM Peak: PM Peak: Heavily congested stop and go traffic.
I-126	Greystone Boulevard to Huger Street/Elmwood Avenue	AM Peak: Heavily Congested traffic is typically stop and go from the river to Elmwood Avenue. PM Peak:	

Observations from the I-20/26/77 Corridor Management Plan Study

Roadway	Observations
Longs Pond Road	Significant congestion in AM from Two Notch Road that backs up to fork with Barr Road. PM congestion as well at fork of Two Notch Road and Barr Road that backs up to ramp off I-20. This may warrent a signal it is currently stop control.
South Lake Drive	No significant congestion issues.
Sunset Boulevard at l-20	AM peak hour EB congestionfrom Northside Blvd. through to Cromer Rd PM peak hour congestion WB from the I-20 WB off-ramp traffic.
Bush River Road at I-20	PM peak hour congestion in the WB direction.
Broad River Road at I-20	PM peak hour congestion near the l-20 ramps.
Monticello Road	No significant congestion issues.
Columbia Avenue	No significant congestion issues.
US 176	No significant congestion issues.
US 76/US 176 at I-26	No significant congestion issues.
Lake Murray Boulevard	No significant congestion issues.
Harbison Boulevard	AM stop and go NB traffic through the interchange. PM stop and go NB and SB traffic, this may be a timing issue.
Piney Grove Road	Am peak hour congestion to get to EB on-ramp. Merge on ramp causes back ups, a two lane ramp may help alleviate some issues. PM peak hour congestion on WB off-ramp with short merging lane.
Saint Andrews Road	No significant congestion issues.
Bush River Road at I-26	Slight PM peak hour congestion from WB traffic.
Sunset Boulevard at I-26	PM peak hour congestion on ramps from short signal time and hospital traffic.
Colonial Life Boulevard	No significant congestion issues.
Greystone Boulevard	No significant congestion issues.
Huger Street/Elmwood Avenue	AM peak hour EB congestion to Assembly Street. PM peak hour congestion on Huger Street at Larvel Street that may be a timing issue.

Appendix G—Choke Point Review

Reasonable Alternative 1 - Microsimulation Summary (2040 Volumes)

Freeway Segments

Segment	AM		PM		Comment

Interchanges

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 101	Par.Clo.	Under	Under	Under	Under	
Exit 102	Par.Clo.	Under	Under	Under	Under	
Exit 103	AO35	Under	Under	Under	At	WB off-ramp experiences queuing on arterial. However, flow is steady.
Exit 104	AO30	At	Under	Under	Under	Eastbound on-ramp experiences queuing on arterial. However, flow is steady.
Exit 106	AO13	Over	Under	Under	Over	Eastbound on-ramp experiences heavy queuing on arterial from the west during AM peak hour. Eastbound on-ramp experiences heavy queuing on arterial from the east during the PM peak hour.
Exit 107/Exit 64	AO17	At	Under	Under	Under	Heavy weaving/merging from I26 eastbound on-ramp from I20.
Exit 108-I-126	AO24	At	Under	Under	At	Heavy volume along l-126 eastbound after the on-ramp from I-20 during the AM peak hour. New .KMZ file maintains four lanes. Heavy volume along I-126 westbound before merge to I-26. New .KMZ file maintains three lanes.
Exit 110	AO46	Under	Under	Over	At	Arterial experiences heavy queuing causing backup on both eastbound and westbound offramps.
Colonial Life	AO17	Under	Under	Under	Under	Will update (as shown in new .KMZ file)

Interchanges - continued

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 63	A06	At	Over	At	Over	Although not shown in simulation, Bush River Road arterial experiences heavy queuing. Currently, DDI signals are clustered with the Berryhill Road signal; this adds additional delay to the operation of the DDI. Westbound off-ramp queue extends to I -20.
Exit 65	AO3	At	Under	Over	Over	The southbound left turn onto I20 eastbound experiences moderate queuing during the AM peak hour. Broad River Road experiences heavy northbound queuing causing backup on the westbound offramps. The eastbound off ramp experiences heavy queuing. Traffic control modifications may be necessary to alleviate off-ramp queuing.

Simulation Observations and Alternative Modifications

The greenline work is the KMZ file used for the simulation observations. The gray linework is the revised design which will be incorporated into the simulation model.

- Exit 101 (Par.Clo) - Interchange design slightly differs in new .KMZ file, but there should be no significant impact to operations with these changes.
- AM Peak Hour - See Figure 1 - interchange operates at under capacity
- PM Peak Hour - See Figure $\mathbf{2}$ - interchange operates at under capacity

Figure 1 - Exit 101 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 2 - Exit 101 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 102 (Par.Clo) - Interchange design slightly differs in new .KMZ file, but there should be no significant impact to operations with these changes.
- AM Peak Hour - See Figure 3 - interchange operates at under capacity
- PM Peak Hour - See Figure 4 - interchange operates at under capacity

Figure 3 - Exit 102 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 4 - Exit 102 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 103 (AO35) - Interchange design differs in new .KMZ file, but there should be no significant impact to operations with these changes as capacity remains the same.
- AM Peak Hour - See Figure 5 - interchange operates at under capacity
- PM Peak Hour - See Figure 6 - interchange operates at capacity at the westbound ramps intersection.

Figure 5 - Exit 103 (AO35) Simulation - AM Peak Hour

Figure 6 - Exit 103 (AO35) Simulation - PM Peak Hour

- Exit 104 (AO30) - Interchange design slightly differs in new .KMZ file, but there should be no significant impact to operations with these changes.
- AM Peak Hour - See Figure 7 - interchange operates at capacity at the eastbound ramps intersection. I-26 eastbound is over capacity due to off-ramp queuing toward I-20 and Exit 106. New design incorporates additional lane for collector-distributor off-ramp.
- PM Peak Hour - See Figure 8 - interchange operates under capacity

Figure 7 - Exit 104 (AO30) Simulation - AM Peak Hour

Figure 8 - Exit 104 (AO30) Simulation - PM Peak Hour

- Exit 106 (AO13) - Interchange design differs in new .KMZ file. Revised runs will need to be completed to see if there are any additional capacity issues. Fernandina/Burning Tree existing configuration maintained in current simulation. New. KMZ file includes widened arterial.
- AM Peak Hour - See Figure 9 - interchange operates over capacity at the eastbound ramps intersection. Additional right turn lane onto EB I-26 was added for capacity. Interchange operates at capacity at the westbound ramps intersection.
- PM Peak Hour - See Figure 10 - interchange operates over capacity at the WB left turns onto l-26 eastbound.

Figure 9 - Exit 106 (AO13) Simulation - AM Peak Hour

Figure 10 - Exit 106 (AO13) Simulation - PM Peak Hour

- Exit 107/Exit 64 (AO17) - Interchange design slightly differs in new .KMZ file. Revised runs will need to be completed to see if there are any additional capacity issues.
- AM Peak Hour - See Figure 11 - The I-26 eastbound on-ramp from I-20 is at capacity but experiences weaving issues.
- PM Peak Hour - See Figure 12 - interchange operates under capacity.

Figure 11 - Exit 107/Exit 64 (AO17) Simulation - AM Peak Hour

Figure 12 - Exit 107/Exit 64 (AO17) Simulation - PM Peak Hour

Exit 108 (I-126) - The revised KMZ file shows significant modifications to the ramp alignments and split locations. Revised runs will need to be completed to see if there are any additional capacity issues.

- AM Peak Hour - See Figure 13-I-126 eastbound operates at capacity. Additional lane added in new .kmz file.
- PM Peak Hour - See Figure 14-I-126 westbound operates at capacity. Additional lane added in new .kmz file.

Figure 13 - Exit 108 (I-126) Simulation - AM Peak Hour

Figure 14 - Exit 108 (I-126) Simulation - PM Peak Hour

- Exit 110 (AO46)
- AM Peak Hour - See Figure 15 - Interchange operates at capacity.
- PM Peak Hour - See Figure 16 - Interchanges operates over capacity at the I-26 eastbound off-ramp due to the arterial queuing along US 378.

Figure 15 - Exit 110 (AO46) Simulation - AM Peak Hour

Figure 16 - Exit 110 (AO46) Simulation - PM Peak Hour

- I-126 at Colonial Life Boulevard - The revised KMZ file shows significant interchange modifications at Colonial Life Boulevard. Revised runs will need to be completed to see if there are any additional capacity issues.
- AM Peak Hour - See Figure 17 - Interchange operates under capacity with installation of signal.
- PM Peak Hour - See Figure 18 - Interchanges operates at capacity with installation of signal. Without signal, the Colonial Live Boulevard arterial in the southbound direction will queue to Bush River Road.

Figure 17 - I-126 at Colonial Life Boulevard Simulation - AM Peak Hour

Figure 18 - I-126 at Colonial Life Boulevard Simulation - PM Peak Hour

- Exit 63 (AO6) - Interchange design similar to new .KMZ file. However, slip-ramp connection to BerryHill Road will seem beneficial to DDI design. Currently, DDI signals are clustered with the Berryhill Road signal; this adds additional delay to the operation of the DDI.
- AM Peak Hour - See Figure 19 - interchange operation at capacity
- PM Peak Hour - See Figure 20 - interchange operates over capacity Major queuing in both directions along Bush River Road and on the I-20 westbound off-ramp

Figure 19 - Exit 63 (AO6) Simulation - AM Peak Hour

Figure 20 - Exit 63 (AO6) Simulation - PM Peak Hour

- Exit 65 (AO3) - The revised KMZ file shows significant interchange modifications at Broad River Road. Revised runs will need to be completed to see if there are any additional capacity issues.
- AM Peak Hour - See Figure 21 - interchange operates at capacity. The southbound left turn onto l-20 eastbound experiences moderate queuing.
- PM Peak Hour - See Figure 22 - interchange operates over capacity. Major queuing on the I-20 eastbound off-ramp.

Figure 21 - Exit 65 (AO6) Simulation - AM Peak Hour

Figure 22 - Exit 65 (AO3) Simulation - PM Peak Hour

RA1 Specific Issues/Choke Points:

1. I-26 EB weaving and slow down between Exit 106 on-ramp and I-26/I-126 EB split

2. I-126 WB lane drop prior to merge with I-26 WB

Reasonable Alternative $\mathbf{2}$ - Microsimulation Summary (2040 Volumes)

Freeway Segments

Segment	AM		PM		Comment

Interchanges

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 101	AO45	Under	Over	Over	Over	There were cycle failures for the WB ramp in the AM, further signal timing changes may alleviate this. Heavy volume in the PM from the WB off-ramp. Additional signal timing changes may improve the operations of the ramp. EB Off-ramp simulation operates better than the densities indicate.
Exit 102	AO42	Over	Over	Under	Over	Simulation shows better results at the ramp termini in the AM and the PM than the density indicates.
Exit 103	AO37	Over	Over	Under	Under	Heavy arterial congestion associated with the left turn onto Park Terrace is degrading the performance of the ramps in the AM and PM. May need to revise timings/paths to better understand the deficiencies.
Exit 104	AO31	Over	Under	At	Under	Heavy arterial congestion associated with the left turn onto Jamil is degrading the performance of the ramps in the AM. May need to revise timings/paths to better understand the deficiencies. In the PM, the simulation operates better than the density indicates.
Exit 106	AO16	Under	Over	Under	Over	Heavy arterial congestion associated with the closely spaced intersections is causing the ramp to severely back up in the AM and PM. The revised KMZ may alleviate this issue.
Exit 107/Exit 64	AO18	Under	Under	Under	Under	
Exit 108	AO24	Over	Under	Over	Under	Simulation showed ramp was heavy but moving steadily in the AM.
Exit 110	AO47	Over	Under	Over	Under	There are signal cycle failures in the AM but the ramp

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	WB Ramp	
						congestion does not extend to the mainline. PM operations show significant queuing on the off-ramps which is stemming from the EB left turn onto McSwain Dr. Additional investigation may be needed into why this volume is so high.
Colonial Life		Under	Under	Under	At	In the PM, the simulation operates better than the density indicates. The higher density recorded from the simulation implies the simulation operation would appear more congested. Additional investigation will be performed as to why this is occurring.
Exit 63	AO10	Over	Over	Over	Over	The tightly spaced intersection of the Berryhill Rd causes congestion along the arterial but the simulation shows better ramp operations than the density indicates in the AM. The WB ramp operates better than the densities indicate in the PM. The possible disconnect between the measured densities and the simulation visualization will be checked into further. The EB ramp shows heavy congestion. Additional turn lane as shown in the new KMZ may help alleviate this issue.
Exit 65	AO5	Over	Under	Over	Under	Broad River Road congestion is spilling back onto the eastbound off-ramp in the AM and PM. Additional arterial improvements may solve this issue.

Simulation Observations and Alternative Modifications

The greenline work is the KMZ file used for the simulation observations. The gray linework is the revised design which will be incorporated into the simulation model.

- Exit 101 (AO45)
- Eastbound Broad River Road Right turn onto l-26 EB on-ramp converted to double right
- WB I-26 off ramp provides for double left turn movement
- Based on the latest file, adjustments are needed at the ramp termini including the channelized right turn at the EB I-26 on-ramp which should improve operations.
- Significant queuing WB I-26 off-ramp in the PM peak hour.
- See Figure 1 and 2

Figure 1 - Exit 101 (AO45) Simulation - AM Peak Hour

Figure 2 - Exit 101 (AO45) Simulation - PM Peak Hour

- Exit 102 (AO42) - No geometry changes made from original concept.
- AM operations are good.
- PM operations have queuing along the EB arterial, Ramp termini have good PM operations.
- See Figure 3 and 4

Figure 3 - Exit 102 (AO42) Simulation - AM Peak Hour

Figure 4 - Exit 102 (AO42) Simulation - PM Peak Hour

- Exit 103 (AO37) - No geometry changes made from the original concept.
- AM operations show heavy queuing for the eastbound and westbound I-26 off ramps. Much of this queuing is stemming from congestion at Exit 106. The congestion at Exit 106 forces traffic to other routes such as Saturn Parkway and Park Terrace Drive (Exit 106 congestion will need to be fixed to get a truer look at the Exit 103 operations.
- Significant queuing present along the WB arterial as well as the WB I-26 off-ramp in the PM peak hour.
- Latest KMZ file shows slight ramp alignment adjustments but that should not impact the operations.
- See Figure 5 and 6

Figure 5 - Exit 103 (AO37) Simulation - AM Peak Hour

Figure 6 - Exit 103 (AO37) Simulation - PM Peak Hour

- Exit 104 (AO31) - No geometry changes made from the original concept.
- AM operations show heavy queuing for the EBI-26 off ramp and all of the approaches to Jamil Road. The queuing results from congestion at Exit 106 causing traffic to seek other routes in the network. Exit 106 will need to be fixed in order to get a truer look at the Exit 104 operations. Otherwise the AM operations look good.
- PM operations show significant queuing on the EB I-26 on-ramp which stems from congestion at the split at the CD road just before Exit 106.
- Latest KMZ file shows slight alignment adjustments and longer left turn bays for the EB Piney Grove left turn at Fernandina Road but there should be no significant impact to operations with these changes.
- See Figure 7 and 8

Figure 7 - Exit 104 (AO31) Simulation - AM Peak Hour

Figure 8 - Exit 104 (AO31) Simulation - PM Peak Hour

- Exit 106 (AO16)
- Added second left turn lane to the WB I-26 off-ramp
- Added unsignalized EB Right turn lane onto the EB I-26 on-ramp
- Due to the closely spaced intersections with the DDI in the original design, the microsimulation had heavy arterial queuing which created gridlock in the system. In additionally there was heavy queuing along the EB CD road that runs parallel to EB I-26.
- PM peak hour operations show issues with the WB I-26 off-ramp and WB St. Andrews Road operations. The proposed revised alignment shown in the revised KMZ file may provide improvements to the corridor operations and in turn the ramp operations.
- The revised KMZ file may improve the operation of the arterial, which in turn should have a positive impact on the operation of the Exit 103 and 104 interchanges. This will be tested as the microsimulation network is revised to reflect the revised KMZ file.
- See Figure 9 and 10

Figure 9 - Exit 106 (AO16) Simulation - AM Peak Hour

Figure 10 - Exit 106 (AO16) Simulation - PM Peak Hour

- Exit 107 (AO18)
- Added an additional lane along the EB I-26 CD road from the on-ramp at Exit 106 to the split between I-126 and I-26 to deal with excessive queuing.
- In the AM, the ramp from WB I-20 to EB I-26 is showing significant queuing due to the weaving area with the ramp from EBI-26 to I-126 and EB I-20 to EB I-26.
- PM operations appear to be working well.
- The revised KMZ file shows significant modifications to the ramp alignments and split locations. Revised runs will need to be completed to see if there are any additional capacity issues.
- See Figure 11 and 12

Figure 11 - Exit 107 (AO18) Simulation - AM Peak Hour

Figure 12 - Exit 107 (AO18) Simulation - PM Peak Hour

- Exit 108 (AO24)
- No significant changes at this interchange other than ramp realignments between I-26 and I-126.
- SB Morninghill Dr. changed to double left turn to accommodate heavy left turn volumes.
- There is congestion in the AM on the mainline ramp from EB I-26 to EB I-126 from where it merges with the ramp from WB I-26 to EB I-126
- See Figure 13 and 14

Figure 13 - Exit 108 (AO24) Simulation - AM Peak Hour

Figure 14 - Exit 108 (AO24) Simulation - PM Peak Hour

- Exit 110 (AO47)
- No changes at this interchange
- PM operations show significant queuing on the off-ramps which is stemming from the EB left turn onto McSwain Dr. additional investigation may be needed into why this volume is so high.
- See Figure 15 and 16

Figure 15 - Exit 110 (AO47) Simulation - AM Peak Hour

Figure 16 - Exit 110 (AO47) Simulation - PM Peak Hour

- I-126 at Colonial Life Blvd.
- Existing interchange analyzed based on original KMZ file.
- No operational issues were noted in the original analysis except that additional control was needed at the Greystone Blvd interchange to account for vehicles U-turning at the Greystone Blvd interchange to get back to Colonial Life Blvd. This should be resolved by modifying the microsimulation model to include the EB off-ramp to Colonial Life Blvd to match the new KMZ file.
- PM operations show queuing along WB I-126 stemming from the Exit 108 interchange
- New KMZ show significant changes to the interchange and will need to be reanalyzed.
- See Figure 17 and 18

Figure 17-I-126 at Colonial Life Boulevard Simulation - AM Peak Hour

Figure 18-1-126 at Colonial Life Boulevard Simulation - PM Peak Hour

- Exit 63 (AO10)
- No geometric changes made to this interchange.
- Revised KMZ file shows significant changes to the ramp alignments and lane usages which will need to be reflected revisions to the microsimulation network.
- No operation issues noted in the original design for the AM peak period other than queuing along Berryhill Road. Need to clarify how the frontage signal road ties in with the SPUI signal.
- PM operations show significant queuing along Berryhill Road as well as the EB I-20 offramp. Revised KMZ geometry may allow for better signal timing which could resolve the off-ramp queuing issues but further analysis will be needed.

- See Figure 19 and 20

Figure 19 - Exit 63 (AO10) Simulation - AM Peak Hour

Figure 20 - Exit 63 (AO10) Simulation - PM Peak Hour

- Exit 65 (AO5)
- Double left turn added to SB Broad River Road, however, significant queuing is still present along SB Broad River upstream from this interchange during the AM peak hour.
- Revised KMZ file shows revised ramp alignments that will need to be re-run in the microsimulation model.
- PM operations show significant queuing in the NB direction of Broad River Road which is impacting the EB I-20 off-ramp. Additional signal timing adjustments may improve this queuing.
- See Figure 21 and 22

Figure 21 - Exit 65 (AO5) Simulation - AM Peak Hour

Figure 22 - Exit 65 (AO5) Simulation - PM Peak Hour

RA2 Specific Choke Points:

1. $\mathrm{I}-20 \mathrm{~EB}$ east of Exit 65 at the where the CD road merges into the mainline

2. I-20 WB west of Exit 63 at the where the CD road merges into the mainline

3. Merge Point for on-ramp from Colonial Life Blvd to l-126 WB

4. Merge point for the on-ramp from Exit 106 to WB I-26

5. Weaving area at merge point between Exit 106 EB on-ramp and the CD road for EB I-26

Reasonable Alternative 3 - Microsimulation Summary (2040 Volumes)

Freeway Segments

Segment	AM		PM		Comment

Interchanges

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 101	AO43	At	At	Under	At	During the AM peak hour, the eastbound on-ramp and the westbound off-ramp experience heavy delay. Although traffic signal timing modifications may alleviate queuing, an additional lane on the eastbound on ramp (similar to existing) and a second left turn lane on the westbound off ramp may be necessary.
Exit 102	Par.Clo.	Under	Under	Under	Under	
Exit 103	AO49	Under	At	Under	Over	During the PM peak hour, traffic exiting on the westbound off-ramp queues off the ramp and back to the mainline.
Exit 104	AO32	Under	At	Under	Under	During the AM peak hour, the westbound off-ramp queuing results from heavy queuing along the arterial.
Exit 106	AO16	Under	At	Under	Over	During both the AM and PM peak hours the westbound off-ramps intersection dual right turns experience major queuing while maneuvering to the far left lane on St. Andrews Road to access Fernandina Road. This closely spaced intersection of St. Andrews Road at Fernandina Road adds additional delay to the operation at both the westbound ramps and the intersection. Traffic signal timing modifications may improve queuing along the arterial and ramp.

Interchanges - continued

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	WB Ramp	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	WB Ramp	
$\begin{aligned} & \text { Exit 107/Exit } \\ & 64 \end{aligned}$	AO21	Over	Under	Under	Under	Heavy queuing at the $\mathrm{I}-26 \mathrm{~EB} / \mathrm{I}-126 \mathrm{~EB}$ split during the AM peak hour. Only two lanes are dedicated to I-126 resulting in major queue back up to Exit 104. Heavy AM volume along I-126 EB after the traffic from the on-ramp from I-20 merge causes slower traffic flow. Additional capacity may be required to improve traffic flow. In addition, there is moderate queuing on the I-20 EB C-D road to I-26 EB.
$\begin{aligned} & \text { Exit } 108-\mathrm{I}- \\ & 126 \end{aligned}$	AO26	Under	Under	At	Over	Heavy volume along l-126 WB prior to I-26 WB merge during the PM peak hour. Four lanes drop to two lanes prior to merge with I-26 WB causing queuing back to Greystone Boulevard. I-26 EB off-ramp to Bush River Road operates at capacity with stop-control at ramp-termini. The installation of a signal and/or additional capacity may alleviate queuing on ramp.
Exit 110	AO46	Over	At	Under	At	Arterial experiences heavy traffic and turning queues causing backups on the eastbound off-ramps during the AM peak hour and the westbound offramps during the PM peak hour. Further adjustments may be made to signals on US 378 to improve arterial operations.
Colonial Life	AO21	Under	Under	Under	Under	Heavy volume along I-126 WB prior to $\mathrm{I}-26$ merge during the PM peak hour. Four lanes drop to two lanes prior to merge with I-26 WB.
Exit 63	AO6	Under	Under	Under	Under	
Exit 65	AO5	Under	Under	Under	Over	The westbound off-ramp is overcapacity during the PM peak hour, which results in queue spillback into the I-20 westbound mainline.

Simulation Observations and Alternative Modifications

The greenline work is the KMZ file used for the simulation observations.

- Exit 101 (AO43)
- AM Peak Hour - See Figure 1 - interchange operates at capacity. The eastbound onramp and the westbound off-ramp experience heavy delay. Although traffic signal timing modifications may alleviate queuing, an additional lane on the eastbound on ramp where the eastbound right turn and westbound left turn traffic meets (similar to existing conditions) and a second left turn lane on the westbound off-ramp may be necessary.
- PM Peak Hour - See Figure $\mathbf{2}$ - interchange operates under capacity

Figure 1 - Exit 101 (AO43) Simulation - AM Peak Hour

Figure 2 - Exit 101 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 102 (Par.Clo)
- AM Peak Hour - See Figure $\mathbf{3}$ - interchange operates under capacity
- PM Peak Hour - See Figure 4 - interchange operates under capacity

Figure 3 - Exit 102 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 4 - Exit 102 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 103 (AO49)
- AM Peak Hour - See Figure 5 - interchange operates at capacity. The westbound off ramp intersection experiences heavy queuing for the westbound left turn movement from Woodcross Drive onto Harbison Boulevard. Traffic signal timing modifications may alleviate delay and queuing.
- PM Peak Hour - See Figure 6 - interchange operates over capacity. The westbound offramp volume queues back into the mainline and the northbound left turn onto I-26 WB operates heavily queues on the mainline. Traffic signal timing modifications may alleviate delay and queuing.

Figure 5 - Exit 103 (AO49) Simulation - AM Peak Hour

Figure 6 - Exit 103 (AO49) Simulation - PM Peak Hour

- Exit 104 (AO32)
- AM Peak Hour - See Figure 7 - interchange operates at capacity at the westbound ramps intersection. The eastbound off-ramp right turn experiences queuing due to heavy queuing along the arterial.
- PM Peak Hour - See Figure 8 - interchange operates under capacity. Heavy northbound left turn volume on Fernandina Road will require geometric and signal timing modifications to improve queuing and overall traffic operations.

Figure 7 - Exit 104 (AO32) Simulation - AM Peak Hour

Figure 8 - Exit 104 (AO32) Simulation - PM Peak Hour

- Exit 106 (AO16) - In this alternative, access to Woodland Hills Road is converted to a RIRO intersection. Dedicated U-turn lanes/phasings have been provided which result in heavy arterial queuing.
- AM Peak Hour - See Figure 9 - interchange operates at capacity at the westbound offramps intersection. The dual right turns experience major queuing while maneuvering to the far left lane on St. Andrews Road to access Fernandina Road. This closely spaced intersection of St. Andrews Road at Fernandina Road adds additional delay to the operation at both the westbound ramps and the intersection. Traffic signal timing modifications may improve queuing along the arterial and ramp. Traffic entering the EB on-ramp backs up to the Jamil Road connection. Queuing from the system interchange at Exit 107 is evident on the EB mainline.
- PM Peak Hour - See Figure 10 - interchange operates over capacity at the westbound off ramps intersection. Similar to AM conditions, the dual right turns experience major queuing while maneuvering to the far left lane on St. Andrews Road to access Fernandina Road. In addition, demand volume from Burning Tree Road requires additional capacity and/or traffic signal timing modifications.

Figure 9 - Exit 106 (AO16) Simulation - AM Peak Hour

Figure 10 - Exit 106 (AO16) Simulation - PM Peak Hour

- Exit 107/Exit 64 (AO21)
- AM Peak Hour - See Figure 11 - interchange operates under capacity. The I-20 eastbound C-D ramp to I-26 EB/I-126 experiences moderate queuing however, flow is steady.
- PM Peak Hour - See Figure 12 - interchange operates under capacity.

Figure 11 - Exit 107/Exit 64 (AO21) Simulation - AM Peak Hour

Figure 12 - Exit 107/Exit 64 (AO21) Simulation - PM Peak Hour

Exit 108 (l-126)

- AM Peak Hour - See Figure 13-l-126 eastbound operates under capacity.
- PM Peak Hour - See Figure 14 - I-126 westbound operates at capacity. I-126 WB experiences heavy queuing as it narrows down from four lanes to two lane prior to meeting with I-26 westbound. I-26 EB off-ramp to Bush River Road operates at capacity with stop-control at ramp-termini. The installation of a signal and/or additional capacity may alleviate queuing on ramp.

Figure 13 - Exit 108 (I-126) Simulation - AM Peak Hour

Figure 14 - Exit 108 (I-126) Simulation - PM Peak Hour

- Exit 110 (AO46)
- AM Peak Hour - See Figure 15 - Interchange operates over capacity at the I-26 eastbound off-ramp termini. The westbound off-ramp operates at capacity.
- PM Peak Hour - See Figure 16 - Interchange operates at capacity at the I-26 eastbound and westbound off-ramps due to the arterial queuing along US 378.

Figure 15 - Exit 110 (AO46) Simulation - AM Peak Hour

Figure 16 - Exit 110 (AO46) Simulation - PM Peak Hour

- I-126 at Colonial Life Boulevard
- AM Peak Hour - See Figure 17 - Interchange operates under capacity.
- PM Peak Hour - See Figure 18 - Interchanges operates under capacity. Heavy volume along I-126 WB prior to I-26 merge during the PM peak hour. Four lanes drop to two lanes prior to merge with l-26 WB.

Figure 17 - I-126 at Colonial Life Boulevard Simulation - AM Peak Hour

Figure 18 - I-126 at Colonial Life Boulevard Simulation - PM Peak Hour

- Exit 63 (AO7) - The new connection from Executive Center Drive to Rockland Road to access Bush River Road, alleviates the congestion from the closely spaced intersections of Berryhill Drive and the westbound ramps along Bush River Road.
- AM Peak Hour - See Figure 19 - interchange operates under capacity.
- PM Peak Hour - See Figure $\mathbf{2 0}$ - interchange operates under capacity.

Figure 19 - Exit 63 (AO5) Simulation - AM Peak Hour

Figure 20 - Exit 63 (AO5) Simulation - PM Peak Hour

- Exit 65 (AO3)
- AM Peak Hour - See Figure 21 - interchange operates under capacity.
- PM Peak Hour - See Figure 22 - interchange operates over capacity. The westbound offramp is over capacity during the PM peak hour, which results in queue spillback into the $\mathrm{I}-20$ westbound mainline.

Figure 21 - Exit 65 (AO6) Simulation - AM Peak Hour

Figure 22 - Exit 65 (AO6) Simulation - PM Peak Hour

RA3 Specific Choke Points:

1. I-26 EB Exit 106 on-ramp onto I-26 EB mainline, lane drop within a heavy weaving area. (Only two lanes to l-126)

2. I-26 EB C-D lane drop down to one lane, vehicles exiting at Exit 106 and looping onto I-26 EB.

3. I-126 WB lane drop down prior to merge with I-26 WB.

Reasonable Alternative 4 - Microsimulation Summary (2040 Volumes)

Freeway Segments

| Segment | AM | | PM | | Comment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Interchanges

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 101	Par.Clo.	Under	Under	Under	Under	
Exit 102	Par.Clo.	Under	Under	Under	Under	
Exit 103	AO35	Under	Under	Under	Under	
Exit 104	AO32	Under	At	Under	Under	During the AM peak hour, the westbound off-ramp queuing results from heavy queuing along the arterial.
Exit 106	AO15	Under	Under	Under	Over	
Exit 107/Exit 64	AO22	At	Under	Under	Over	Moderate queuing on the I-26 EB C-D road during the AM peak hour. During the PM peak hour, the I-20 WB on-ramp experiences heavy queuing as a result of one lane (narrowing from three) entering I-20. Additional capacity may be required to improve traffic flow.
Exit 108-I-126	AO25	At	Under	Under	At	Heavy volume along l-126 EB after the traffic from the I-20 EB on-ramp merges. Merge causes slower traffic flow. Heavy volume along I-126 WB prior to merge with I-26 WB during the PM Peak hour.
Exit 110	AO46	Over	Under	Under	Over	Arterial experiences heavy traffic and turning queues causing backups on the eastbound off-ramps during the AM peak hour and the westbound off-ramps during the PM peak hour. Further adjustments may be made to signals on US 378 to improve arterial operations.
Colonial Life	AO22	Under	Under	Under	Under	

Interchanges - continued

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 63	AO7	Over	Under	At	At	The eastbound left turns onto I20 experiences heavy queuing during the AM peak hour. Extending the dual left turn lanes may improve intersection operations. During the PM peak hour, the overall intersection experiences moderate queuing.
Exit 65	AO3	At	Under	At	Under	The southbound left turn onramp to I-20 experiences heavy queuing during the $A M$ peak hour. Dual left turn lanes may be necessary to improve intersection operations. The signalized EB off-ramp experiences moderate queues during the PM peak hour. Traffic signal timing modifications may improve operations.

Simulation Observations and Alternative Modifications

The greenline work is the KMZ file used for the simulation observations.

- Exit 101 (Par.Clo)
- AM Peak Hour - See Figure 1 - interchange operates under capacity
- PM Peak Hour - See Figure $\mathbf{2}$ - interchange operates under capacity

Figure 1 - Exit 101 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 2 - Exit 101 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 102 (Par.Clo)
- AM Peak Hour - See Figure 3 - interchange operates under capacity
- PM Peak Hour - See Figure 4 - interchange operates under capacity

Figure 3 - Exit 102 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 4 - Exit 102 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 103 (AO35)
- AM Peak Hour - See Figure 5 - interchange operates under capacity
- PM Peak Hour - See Figure 6 - interchange operates under capacity.

Figure 5 - Exit 103 (AO35) Simulation - AM Peak Hour

Figure 6 - Exit 103 (AO35) Simulation - PM Peak Hour

- Exit 104 (AO32)
- AM Peak Hour - See Figure 7 - interchange operates at capacity at the westbound ramps intersection. The westbound off-ramp right turn experiences queuing due to heavy queuing along the arterial.
- PM Peak Hour - See Figure 8 - interchange operates under capacity. Heavy northbound left turn volume at the intersection of Piney Grove Road at Fernandina Road will require geometric and signal timing modifications to improve queuing and overall traffic operations.

Figure 7 - Exit 104 (AO32) Simulation - AM Peak Hour

Figure 8 - Exit 104 (AO32) Simulation - PM Peak Hour

- Exit 106 (AO15)
- AM Peak Hour - See Figure 9 - interchange operates at capacity at the WB off-ramps intersection. The dual right turns experience major queuing while maneuvering to the far left lane on St. Andrews Road to access Fernandina Road. This closely spaced intersection of St. Andrews Road at Fernandina Road adds additional delay to the operation of both the DDI and the intersection. Traffic signal timing modifications may improve queuing along the arterial and ramp.
- PM Peak Hour - See Figure 10 - interchange operates over capacity at the WB off ramps intersection. Similar to AM conditions, the dual right turns experience major queuing while maneuvering to the far left lane on St. Andrews Road to access Fernandina Road. This queue spills onto the C-D ramp. In addition, demand volume from Burning Tree Road requires traffic signal timing modifications.

Figure 9 - Exit 106 (AO15) Simulation - AM Peak Hour

Figure 10 - Exit 106 (AO15) Simulation - PM Peak Hour

- Exit 107/Exit 64 (AO22)
- AM Peak Hour - See Figure 11 - interchange operates under capacity. The I-26 eastbound C-D ramp to I-20 experiences moderate queuing however, flow is steady.
- PM Peak Hour - See Figure 12 - interchange operates over capacity. The I-26 westbound off-ramp to l-20 WB experiences heavy queuing. The ramp volume to $\mathrm{I}-20$ westbound from l-26 in both the eastbound and westbound directions merges from three lanes to one lane causing major queuing. Additional lanes may be needed to merge into l-20 to improve traffic flow on these ramps. In addition, the westbound on ramp from I-20 WB experiences heavy queuing which stems from the Exit 106 interchange. The westbound off-ramp volume at that exit backs up onto the C-D road which causes a major queue backup onto I-20 westbound to Exit 65.

Figure 11 - Exit 107/Exit 64 (AO22) Simulation - AM Peak Hour

Figure 12 - Exit 107/Exit 64 (AO22) Simulation - PM Peak Hour

Exit 108 (I-126)

- AM Peak Hour - See Figure 13-I-126 eastbound operates at capacity towards I-126 eastbound. However, flow is steady.
- PM Peak Hour - See Figure 14 - I-126 westbound operates at capacity. The I-126 WB expressway to l-20 experiences moderate queuing as it narrows down from two lanes to one lane prior to meeting with Bush River Road on ramp.

Figure 13 - Exit 108 (I-126) Simulation - AM Peak Hour

Figure 14 - Exit 108 (I-126) Simulation - PM Peak Hour

- Exit 110 (AO46)
- AM Peak Hour - See Figure 15 - Interchange operates over capacity at the eastbound off-ramp termini.
- PM Peak Hour - See Figure 16 - Interchange operates over capacity at the I-26 westbound off-ramp due to the arterial queuing along US 378.

Figure 15 - Exit 110 (AO46) Simulation - AM Peak Hour

Figure 16 - Exit 110 (AO46) Simulation - PM Peak Hour

- I-126 at Colonial Life Boulevard
- AM Peak Hour - See Figure 17 - Interchange operates under capacity. Mainline volume slightly queues in the eastbound direction. However, flow is steady.
- PM Peak Hour - See Figure 18 - Interchanges operates under capacity.

Figure 17 - I-126 at Colonial Life Boulevard Simulation - AM Peak Hour

Figure 18 - I-126 at Colonial Life Boulevard Simulation - PM Peak Hour

- Exit 63 (AO7) - Bush River Road is widened to provide dual left turn lanes and a single right turn lane in both the eastbound and westbound direction. Also, channelized right turn lanes were provided for the I-20 off-ramps.
- AM Peak Hour - See Figure 19 - interchange operates over capacity for the eastbound dual left turn lanes. Geometric changes such as extending the dual left turn lanes and modifying traffic signal timing may improve intersection operations.
- PM Peak Hour - See Figure 20 - interchange operates at capacity. The intersection experiences moderate delay.

Figure 19 - Exit 63 (AO7) Simulation - AM Peak Hour

Figure 20 - Exit 63 (AO7) Simulation - PM Peak Hour

- Exit 65 (AO3) - Simulation file differs slightly from .KMZ file. The original design narrowed the eastbound C-D ramp volume down to one lane as the ramp was merging with l-20 mainline, causing major bottleneck issues. Two lanes merging onto l-20 eastbound were modeled, and a lane drop was added shortly after merge to improve traffic flow.
- AM Peak Hour - See Figure 21 - interchange operates at capacity. The southbound left turn onto l-20 eastbound experiences heavy queuing. The southbound left turn volume may require dual turn lanes to improve intersection operations. Although not shown in Figure 21, the eastbound off-ramp experiences moderate queuing at the ramp termini.
- PM Peak Hour - See Figure 22 - interchange operates at capacity. The eastbound offramp experiences heavy queuing at the ramp termini. The westbound C-D road from I20 westbound to I-26 westbound is overcapacity during the PM peak hour, which results in queue spillback into the I-20 westbound mainline. This stems from the I-26 westbound off-ramp queuing at Exit 106.

Figure 21 - Exit 65 (AO3) Simulation - AM Peak Hour

Figure 22 - Exit 65 (AO3) Simulation - PM Peak Hour

RA4 Specific Choke Points:

1. I-20 on-ramp from I-26 EB/WB lane drop prior to merge onto the mainline

2. I-26 WB lane drop between Exit 106 and Exit 104

3. Merge Point for off-ramp from I-126 WB to I-26 C-D Road

4. I-20 EB prior to C-D road split

5. Weaving area at merge point between Exit 106 WB off-ramp and the I-26 WB C-D road and Choke point at lane drop on I-20 WB C-D road

6. I-126 EB bottleneck at on-ramps from l-26

7. I-26 EB prior to I-26 EB C-D off-ramp east of Exit 106

Reasonable Alternative 5 - Microsimulation Summary (2040 Volumes)

Freeway Segments

Segment	AM		PM		Comment
	EB	WB	EB	WB	
Exit 101-102	Under	Under	Under	Under	
Exit 102-103	Under	Under	Under	Under	As shown in the new .KMZ file, the westbound on-ramp acceleration lane from Exit 103 will be extended to the westbound off-ramp at Exit 102 which will increase capacity.
Exit 103-104	Over	Under	Under	Over	There is congestion on the mainline between the on-ramp at Exit 103 and downstream off-ramp at Exit 104. In new .KMZ file, the eastbound on-ramp acceleration lane from Exit 103 will be extended to the eastbound off-ramp at Exit 104 which will create a weaving section and should increase capacity. Similar issues between the westbound on-ramp from from Exit 104 to the offramp at Exit 103; In the new KMZ file, the ramps connect, creating a westbound weaving section that should increase capacity.
Exit 104-106	Over	Under	Over	Over	Overcapacity on the EB C-D road that goes to $\mathrm{I}-20 \mathrm{WB} / \mathrm{EB}$ ramps at Exit 107 in both the AM and PM peak hours. (In the new .KMZ file, the EB C-D Road has four lanes instead of two, which should alleviate most of the capacity issues. Heavy PM queuing at WB on-ramp merge from Exit 106. In the new KMZ file, the WB on-ramp from Exit 106 extends to the off-ramp at Exit 104, creating a weaving section that should increase capacity.
Exit 106-107	At	Under	Under	At	Heavy volume on the eastbound mainline during the AM peak hour and on the westbound mainline during the PM peak hour. However, flow is steady
Exit 107-108	Under	Under	Under	At	Heavy volume in the westbound direction during the PM peak hour. However, flow is steady
Exit 108-110	Under	Under	Under	Under	
Exit 108 - Colonial Life	Under	Under	At	Over	Heavy volume along l-126 EB after the traffic from the on-ramp from I-20 EB

				merges just to the west of the Bush River Road bridge. Merge causes slower traffic flow. The New .KMZ file maintains four lanes and incorporates a new design - this should improve flow as the currently modeled section goes from four to three lanes west of the location where the I-26 WB ramp to I-126 EB merges.	
Exit 63-64					
	Under	Under	Under	Under	The current network is missing a connection from I-26 WB to Exit 63 via I- 20 WB. This and other elements of the Exit 107 interchange will be addressed in a new .KMZ file)
Exit 64-65	Under	Under	Under	Under	Ramp connections from I-20 and Exit 65 to I-26 and the Exit 107 interchange will be updated in the new .KMZ file

Interchanges

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \end{gathered}$	$\begin{aligned} & \text { WB } \\ & \text { Ramp } \end{aligned}$	
Exit 101	Par.Clo.	Under	Under	Under	Under	During the AM peak hour, the eastbound on-ramp queues at the merge point; however the new .KMZ file shows an acceleration lane/weaving section that should reduce or eliminate this queuing.
Exit 102	Par.Clo.	Under	Under	Under	Under	
Exit 103	AO35	Under	Under	Under	Under	
Exit 104	AO30	Under	Under	Under	Under	
Exit 106	AO13	Over	Under	Under	Over	EB right turn to the EB on-ramp experiences heavy queuing on the arterial during AM peak hour due to the heavy WB left turn to the EB on-ramp. WB left turn to the EB on-ramp experiences heavy queuing on the arterial during the PM peak hour. The westbound off-ramp also experiences heavy queuing during the PM peak hour.
Exit 107/Exit 64	AO20	At	Under	Under	Under	Heavy weaving/merging from I26 eastbound on-ramp from I- 20. This may be addressed by

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
						changes in the concept as shown in the new KMZ
Exit 108-I-126	AO24	At	Under	Under	At	Heavy volume along l-126 EB after the traffic from the onramp from l-20 EB merges just to the west of the Bush River Road bridge. Merge causes slower traffic flow. The New .KMZ file maintains four lanes and incorporates a new design this should improve flow as the currently modeled section goes from four to three lanes west of the location where the I-26 WB ramp to I-126 EB merges. Heavy volume along I-126 WB prior to merge with I-26. New .KMZ file maintains three lanes but is reduced to two lanes prior to merge with l-26. This is also reflected in the existing KMZ where two lanes from l-126 WB merge to l-26. This may have to be adjusted further to improve flow and keep traffic from backing up on I-126 WB to the Colonial Life interchange.
Exit 110	AO46	Under	Under	Over	At	Arterial experiences heavy traffic and turning queues causing backups on both the eastbound and westbound offramps. Further adjustments may be able to be made to signals on US 378.
Colonial Life	AO20	Under	Under	Under	Under	Will update (as shown in new .KMZ file)

Interchanges - continued

Exit		AM		PM		
Location	AO	EB Ramp	WB Ramp	EB Ramp	WB Ramp	

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { WB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \\ \hline \end{gathered}$	
						heavy delay. Traffic control modifications may be necessary to alleviate off-ramp queuing. It should be noted in the current and new KMZ, there is no access from I-26 WB/I-126 WB to this exit. This will need to be addressed. In addition to the removal of the ramps to Bush River Road at Exit 108, vehicle paths were either exiting at Exit 106 then returning back to $\mathrm{I}-26$ eastbound or taking I-20 westbound, exiting at Exit 61, then getting off at the eastbound exit ramps. Both the westbound and eastbound ramp termini experience heavy queuing because of the detoured traffic.
Exit 65	AO3	Under	Under	Under	Over	Broad River Road experiences heavy northbound queuing causing backup on the westbound off-ramps. Traffic control modifications may be necessary to alleviate off-ramp queuing.

Simulation Observations and Alternative Modifications

The greenline work is the KMZ file used for the simulation observations. The gray linework is the revised design which will be incorporated into the simulation model.

- Exit 101 (Par.Clo) - Interchange design slightly differs in new .KMZ file, but there should be no significant impact to operations with these changes.
- AM Peak Hour - See Figure 1 - interchange operates under capacity
- PM Peak Hour - See Figure $\mathbf{2}$ - interchange operates under capacity

Figure 1 - Exit 101 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 2 - Exit 101 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 102 (Par.Clo) - Interchange design slightly differs in new .KMZ file, but there should be no significant impact to operations with these changes.
- AM Peak Hour - See Figure 3 - interchange operates under capacity
- PM Peak Hour - See Figure 4 - interchange operates under capacity

Figure 3 - Exit 102 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 4 - Exit 102 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 103 (AO35) - Interchange design differs in new .KMZ file, but there should be no significant impact to operations with these changes as capacity remains the same.
- AM Peak Hour - See Figure 5 - interchange operates under capacity
- PM Peak Hour - See Figure 6 - interchange operates under capacity.

Figure 5 - Exit 103 (AO35) Simulation - AM Peak Hour

Figure 6 - Exit 103 (AO35) Simulation - PM Peak Hour

- Exit 104 (AO30) - Interchange design slightly differs in new .KMZ file, but there should be no significant impact to operations with these changes.
- AM Peak Hour - See Figure 7 - interchange operates under capacity at the eastbound ramps intersection. I-26 eastbound is over capacity due to off-ramp queuing from the CD Road to Exit 106 and I-20. The new KMZ incorporates additional lane for collectordistributor off-ramp (currently modeled as two lanes).
- PM Peak Hour - See Figure 8 - interchange operates under capacity

Figure 7 - Exit 104 (AO30) Simulation - AM Peak Hour

Figure 8 - Exit 104 (AO30) Simulation - PM Peak Hour

- Exit 106 (AO13) - Interchange design differs in new .KMZ file. The SPUI ramps are pushed out towards the existing ramps in new KMZ. Also, the new KMZ shows a wider arterial footprint within the interchange. Revised runs will need to be completed to see how these changes improve capacity. Fernandina/Burning Tree existing configuration maintained both KMZ.
- AM Peak Hour - See Figure 9 - interchange operates over capacity at the eastbound ramps intersection. An additional EB right turn lane onto EB I-26 was added for capacity. Interchange operates at capacity at the westbound ramps intersection. Dual WB left turn movement from St Andrews to the EB on-ramp was included in the simulation network.
- PM Peak Hour - See Figure 10 - interchange operates over capacity at the WB dual left turns onto l-26 eastbound.

Figure 9 - Exit 106 (AO13) Simulation - AM Peak Hour

Figure 10 - Exit 106 (AO13) Simulation - PM Peak Hour

- Exit 107/Exit 64 (AO20) - Interchange design slightly differs in new .KMZ file. Revised runs will need to be completed to see if there are any additional capacity issues. Also need to address providing access to Exit 63 from WB I-26.
- AM Peak Hour - See Figure 11 - The I-26 eastbound on-ramp from I-20 WB is at capacity but experiences weaving issues where the I-20 EB to I-26 EB ramp and the C-D Road to EB I-126 meet.
- PM Peak Hour - See Figure 12 - interchange operates under capacity.

Figure 11 - Exit 107/Exit 64 (AO20) Simulation - AM Peak Hour

Figure 12 - Exit 107/Exit 64 (AO20) Simulation - PM Peak Hour

Exit 108 (I-126) - The revised KMZ file shows significant modifications to the ramp alignments and split locations. Revised runs will need to be completed to see if there are any additional capacity issues.

- AM Peak Hour - See Figure 13-I-126 eastbound operates at capacity. An additional lane to EB I-126 is added in new .kmz file and should improve flow.
- PM Peak Hour - See Figure 14-I-126 westbound operates at capacity. Additional lane added in new .kmz file which should improve flow, but I-126 WB still merges into I-26 WB with two lanes (narrowing from three) similar to the existing KMZ. It may be necessary to add another lane to improve flow and keep WB traffic on I-126 from backing up to the Colonial Life interchange, .

Figure 13 - Exit 108 (I-126) Simulation - AM Peak Hour

Figure 14 - Exit 108 (I-126) Simulation - PM Peak Hour

- Exit 110 (AO46) - no geometric changes
- AM Peak Hour - See Figure 15 - Interchange operates at capacity at the eastbound ramp termini. The westbound off-ramp termini queues.
- PM Peak Hour - See Figure 16 - Interchange operates over capacity at the I-26 westbound off-ramp due to the arterial queuing along US 378.

Figure 15 - Exit 110 (AO46) Simulation - AM Peak Hour

Figure 16 - Exit 110 (AO46) Simulation - PM Peak Hour

- I-126 at Colonial Life Boulevard - The revised KMZ file shows significant interchange modifications at Colonial Life Boulevard. Revised runs will need to be completed to see if there are any additional capacity issues.
- AM Peak Hour - See Figure 17 - Interchange operates under capacity with installation of signal.
- PM Peak Hour - See Figure 18 - Interchanges operates at capacity with installation of signal. Without a signal, the Colonial Life Boulevard arterial in the southbound direction will queue to Bush River Road.

Figure 17 - I-126 at Colonial Life Boulevard Simulation - AM Peak Hour

Figure 18 - I-126 at Colonial Life Boulevard Simulation - PM Peak Hour

- Exit 63 (AO8) - Interchange design similar to new .KMZ file.
- AM Peak Hour - See Figure 19 - interchange operates over capacity at the eastbound off-ramp termini. Currently, the northbound right turn operates under signal control with no right turn on red. Traffic signal timing modifications may help the intersection operation.
- PM Peak Hour - See Figure $\mathbf{2 0}$ - interchange operates over capacity.
- It should be noted, based on this alternative design, there is no access from I-26 WB/I126 WB to this exit. In addition to the closure of the Bush River Road exits, it was observed that most vehicle paths on I-26 westbound with a destination to Bush River Road at Exit 63 were using I-20 westbound, making a u-turn at Exit 61, then exiting at the eastbound off-ramps. Both the westbound and eastbound ramp termini experience heavy queuing because of this detoured traffic.

Figure 19 - Exit 63 (AO6) Simulation - AM Peak Hour

Figure 20 - Exit 63 (AO6) Simulation - PM Peak Hour

- Exit 65 (AO3) - The revised KMZ file shows significant interchange modifications to the ramps from Exit 65 and from I-20 WB towards the system interchange at Exit 107. Revised runs will need to be completed to see if these difference result in any capacity issues.
- AM Peak Hour - See Figure 21 - interchange operates at capacity. The southbound left turn onto l-20 eastbound experiences moderate queuing on dual left turn lanes.
- PM Peak Hour - See Figure 22 - interchange operates over capacity. Major queuing on the I-20 eastbound off-ramp due to stop sign control on the right turn movement. Adapting this to signal control may improve operations.

Figure 21 - Exit 65 (AO6) Simulation - AM Peak Hour

Figure 22 - Exit 65 (AO3) Simulation - PM Peak Hour

RA5 Specific Choke Points:

1. I-20 EB C-D on-ramp to I-20 WB, only one lane onto I-20 EB mainline

2. I-126 WB prior to merge with I-26 WB mainline

Reasonable Alternative 6 - Microsimulation Summary (2040 Volumes)

Freeway Segments

Segment	AM		PM		Comment
	EB	WB	EB	WB	
Exit 101-102	Under	Under	Under	Under	
Exit 102-103	Under	Under	Under	Under	
Exit 103-104	Over	Under	Under	Under	Severe congestion is observed on the mainline in the eastbound direction during the AM peak hour. In the new .KMZ file, the connection between I-26 and $\mathrm{I}-20$ is provided via an eastbound C-D Road. Traffic is diverted to this C-D Road west of Exit 106 and merged back to I-20 east of Exit 65 (There is no direct connection to the mainline in between). The C-D Road doesn't have the capacity to carry this high traffic volume and also has multiple lane drops at close proximity. These cause severe queuing that propagates all the way back to Exit 103.
Exit 104-106	Over	Under	Over	Over	Severe congestion is observed on the mainline in the eastbound direction during the AM peak hour. In the new .KMZ file, the connection between I-26 and $\mathrm{I}-20$ is provided via an eastbound $\mathrm{C}-\mathrm{D}$ Road. Traffic is diverted to this C-D Road west of Exit 106 and merged back to I-20 east of Exit 65 (There is no direct connection to the mainline in between). The C-D Road doesn't have the capacity to carry this high traffic volume and also has multiple lane drops at close proximity. These cause severe queuing that propagates all the way back to Exit 103. During the PM peak hour, the EB C-D Road carries volume towards I-20 and I126 which causes major queuing on the EB I-26 mainline.
Exit 106-107	Under	Under	Under	At	Over capacity on the EB C-D road that goes to I-20 WB/EB ramps at Exit 107 in the AM peak hour. Mainline operates well.

					During the PM peak hour. WB traffic weaving on the short segment from where the ramps from I-20 EB and I-20 WB meet prior to Exit 106 and then separate to exit to the mainline WB I-26 or to Exit 106, weaving slows traffic and causes moderate congestion.
Exit 107-108					
Exit 108-110					
Exit 108-Colonial Life					

| | | | | congestion and results in upstream back-
 ups. Increased capacity and the
 elimination of the bottlenecks may
 reduce congestion and improve traffic
 operation. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Interchanges

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \hline \text { EB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 101	AO43	Under	Under	Under	Under	
Exit 102	AO42	Under	Under	Under	Under	
Exit 103	A037	Under	Under	Under	Under	Moderate queuing is observed on the WB Off-ramp during the AM peak hour.
Exit 104	AO31	Under	Under	Under	Under	During the AM peak hour, congestion on the EB mainline causes queues to be observed backing up onto the EB on-ramp from Exit 104
Exit 106	AO14	Over	Over	Under	Under	During the AM peak hour, queue backups on the EB C-D Road causes eastbound onramp traffic from Exit 106 to back up all the way to the interchange and block access to the ramp for both the EB right and WB left turns on St Andrews Road. The WB left turn queue on St Andrews Road propagates beyond the DDI interchange and blocks access for the WB Offramp left turn traffic to St Andrews Road. Increased capacity and the elimination of bottleneck on the C-D Road may reduce congestion and improve traffic operation.
Exit 107/Exit 64	AO19	Over	Under	Under	Over	During the AM peak hour, heavy weaving and merging was observed on the C-D Road from the EB I-26 System Ramp to EB I-20. This causes severe congestion along the C-D Road with queues backing up to Exit 103 on the EB I- 26 mainline. Congestion on the Eastbound CD Road was also observed during the PM peak hour. However, the queue backup does not extend beyond the merge point between the I-26

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
						EB System Ramp and the EB C-D Road to EB I-20.. Lack of capacity, merging and weaving problems on the westbound C-D Road from the I26 system ramps to the merge into I-20 WB west of Exit 63 is congested during the PM peak hour. Increased capacity and the elimination of bottlenecks may reduce congestion and improve traffic operation.
Exit 108-I-126	AO24	Under	Under	Under	Under	During the PM peak hour, heavy volume along I-126 WB merges with the traffic from the onramp from I-26 WB just to the west of the Bush River Road bridge. The merge causes slower traffic flow. This also cause moderate queuing on WB I-126 which extends beyond Colonial Life Boulevard.
Exit 110	AO47	Under	Under	Over	Over	Arterial experiences heavy traffic and turning queues are causing backups on both the eastbound and westbound offramps. Further adjustments may be able to be made to the signals on US 378.
Colonial Life	AO19	Under	Under	Under	Under	Queuing issues were observed during the AM peak hour on both the EB C-D Road and SB Colonial Life Boulevard. A left turn lane on the C-D Road at the intersection may improve traffic operation further.

Interchanges - continued

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 63	A07	Under	Under	Over	Over	Severe queuing was observed on the westbound Off-and OnRamp during the PM peak hour. The WB On-ramp congestion is caused by merging at the ramp terminus on the mainline.
Exit 65	AO5	Over	Over	Under	Over	During the PM peak hour, the merging of the EB on-ramp traffic on to EB I-20 creates a major backup on the EB Onramp and blocks southbound left turn traffic from Broad River Road from entering the EB Onramp.

Simulation Observations and Alternative Modifications

The greenline work is the KMZ file used for the simulation observations.

- Exit 101 (AO43)
- AM Peak Hour - See Figure 1 - interchange operates under capacity
- PM Peak Hour - See Figure 2 - interchange operates under capacity

Figure 1 - Exit 101 (AO43) Simulation - AM Peak Hour

Figure 2 - Exit 101 (AO43) Simulation - PM Peak Hour

- Exit 102 (AO42)
- AM Peak Hour - See Figure 3 - interchange operates under capacity
- PM Peak Hour - See Figure 4 - interchange operates under capacity

Figure 3 - Exit 102 (AO42) Simulation - AM Peak Hour

Figure 4 - Exit 102 (AO42) Simulation - PM Peak Hour

- Exit 103 (AO37)
- AM Peak Hour - See Figure 5 - interchange operates under capacity. I-26 eastbound is operating over capacity due to off-ramp queuing from the C-D Road to Exit 106 and I-20. Queuing is also observed at the EB On-ramp merge area
- PM Peak Hour - See Figure 6 - interchange operates under capacity. Moderate queuing occurs on the WB Off-ramp due to the signal operation. Traffic signal modifications may address this issue.

Figure 5 - Exit 103 (AO37) Simulation - AM Peak Hour

Figure 6 - Exit 103 (AO37) Simulation - PM Peak Hour

- Exit 104 (AO31)
- AM Peak Hour - See Figure 7 - interchange operates under capacity at the eastbound ramps intersection. I-26 eastbound is over capacity due to off-ramp queuing from the CD Road to Exit 106 and I-20. Because of this, the eastbound On-Ramp also backs up all the way to Piney Grove Road, resulting in queuing on the DDI in the westbound direction between the eastbound on-ramp and westbound off-ramp
- PM Peak Hour - See Figure 8 - interchange operates under capacity

Figure 7 - Exit 104 (AO31) Simulation - AM Peak Hour

Figure 8 - Exit 104 (AO31) Simulation - PM Peak Hour

- Exit 106 (AO14)
- AM Peak Hour - See Figure 9 - The I-26 eastbound on-and off-ramps are completely blocked due to the severe queuing on the C-D Road, which in turn causes severe queuing in both directions along the arterial. Queue backup propagates beyond the westbound ramp intersection and blocks access to the interchange for the left turning traffic on the westbound off-ramp. Increased capacity and the elimination of bottlenecks on the eastbound C-D Road may reduce congestion and improve traffic operation.
- PM Peak Hour - See Figure 10 - interchange operates under capacity at the WB dual left turns onto l-26 eastbound.
- The proposed closure of Fernandina Road and rerouting traffic via Kay Street will adversely impact traffic operations at the intersections of Kay Street and St. Andrews Road and Kay Street and Beatty Road.
- The diverted left turn traffic on the eastbound approach of St. Andrews Road at the Kay Street intersection results in major queuing in the eastbound direction. Geometric improvements, such as providing a second eastbound left turn lane for traffic turning on to Kay Street and traffic control modification at this intersection may improve traffic operation and reduce queuing
- The intersection of Kay Street and Beatty Road will also experience severe queuing if the Kay Street approach continues to be stop sign controlled. Queues were observed extending all the way to St. Andrews Road. Installation of a traffic signal at this intersection may need to be considered to improve traffic operation and reduce queuing.
- Adjustments are likely needed to turn lanes and signal operation at the intersection of Jamil Road and relocated Woodland Hills Road to reduce observed queuing in the peak hours.

Figure 9 - Exit 106 (AO14) Simulation - AM Peak Hour

Figure 10 - Exit 106 (AO14) Simulation - PM Peak Hour

- Exit 107/Exit 64 (AO19)
- AM Peak Hour - See Figure $\mathbf{1 1}$ - the eastbound I-20 C-D Road operates over capacity and has several lane drops in close proximity, creating localized bottlenecks. Additionally, weaving issues were observed where the I-26 EB system ramp merges with the EB I-20 C-D Road. This causes a severe backup on the I-26 eastbound System Ramp onto I-26 EB upstream of Exit 106. Increases in capacity and the elimination of bottlenecks may reduce congestion and improve traffic operation.
- PM Peak Hour - See Figure $\mathbf{1 2}$-.Congestion issues similar to the AM peak hour were observed on the EBI-20 C-D Road to the west of Exit 65, although the queue backup is less severe and doesn't propagate all the way back to I-26 EB System Ramp. The westbound I-20 C-D Road also experiences congestion due to lack of capacity and closely spaced weaving and merging areas. The resulting congestion creates severe queueing on the WB I-26 System Ramp to I-20 WB. Capacity increases and the elimination of bottlenecks may reduce congestion and improve traffic operation.

Figure 11 - Exit 107/Exit 64 (AO19) Simulation - AM Peak Hour

Figure 12 - Exit 107/Exit 64 (AO19) Simulation - PM Peak Hour

- AM Peak Hour - See Figure 13 -eastbound and westbound I-126 operate under capacity.
- PM Peak Hour - See Figure 14 - I-126 westbound operates over capacity with queues extending beyond the Colonial Life interchange. This is the result of the congestion introduced by weaving traffic at the location where I-26 WB and I-126 WB meet at the Bush River Road bridge.

Figure 13 - Exit 108 (I-126) Simulation - AM Peak Hour

Figure 14 - Exit 108 (I-126) Simulation - PM Peak Hour

- Exit 110 (AO47) - no geometric changes
- AM Peak Hour - See Figure 15 - Interchange operates at capacity at the eastbound ramp terminus. Both the eastbound and westbound off-ramp experiences queuing, however these queuing do not impact I-26 mainline operation.
- PM Peak Hour - See Figure 16 - Interchange operates over capacity at the I-26 westbound off-ramp due to the arterial queuing along US 378.

Figure 15 - Exit 110 (AO47) Simulation - AM Peak Hour

Figure 16 - Exit 110 (AO47) Simulation - PM Peak Hour

- I-126 at Colonial Life Boulevard
- AM Peak Hour - See Figure 17 - Interchange operates under capacity with the eastbound ramp intersection operating under signal control. Queuing is observed at the eastbound ramp intersection both on southbound Colonial Life Boulevard and the eastbound C-D Road/off-ramp.
- PM Peak Hour - See Figure 18 - Interchange operates under capacity with installation of signal.

Figure 17 - I-126 at Colonial Life Boulevard Simulation - AM Peak Hour

Figure 18 - I-126 at Colonial Life Boulevard Simulation - PM Peak Hour

- Exit 63 (AO7) - Interchange design differs from the .KMZ file. In the simulation network, Bush River Road is widened to provide dual eastbound left turn lanes and a single westbound right turn lane to facilitate traffic entering the eastbound on-ramp. Also, a channelized right turn was provided on the westbound off-ramp.
- AM Peak Hour - See Figure 19 - interchange operates under capacity
- PM Peak Hour - See Figure 20 - interchange operates over capacity. Severe queuing is observed on the westbound On-and Off-ramps.

Figure 19 - Exit 63 (AO7) Simulation - AM Peak Hour

Figure 20 - Exit 63 (AO7) Simulation - PM Peak Hour

- Exit 65 (AO5)
- AM Peak Hour - See Figure 21 - interchange operates at capacity. The southbound traffic at the crossover heading to the left turn to the EB on-ramp experiences queuing back towards Marley Drive.
- PM Peak Hour - See Figure 22 - interchange operates over capacity. Severe queuing is present on the eastbound On-ramp extending back from the merge area into EB I-20, which in turn creates significant backup on the displaced left turn lanes on the Broad River Road overpass. There is also queuing along northbound Broad River Road between Marley Drive to the south of Longcreek Drive.

Figure 21 - Exit 65 (AO5) Simulation - AM Peak Hour

Figure 22 - Exit 65 (AO5) Simulation - PM Peak Hour

RA6 Specific Choke Points:

1. I-20 EB on-ramp from C-D road, lane drop prior to merge onto the mainline

2. I-20 WB on-ramp from C-D road, lane drop prior to merge onto the mainline

Reasonable Alternative 7 - Microsimulation Summary (2040 Volumes)

Freeway Segments

Segment	AM		PM		Comment

Interchanges

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 101	Par. Clo.	Under	Under	Under	Under	
Exit 102	Par. Clo.	Under	Under	Under	Under	
Exit 103	AO49	Under	Under	Under	Under	
Exit 104	AO30	Under	Under	Over	Under	Additional signal improvements may get this to be at/under capacity
Exit 106	AO13	Under	Under	Under	Over	Excessive queuing stemming from the interaction with the Burning Tree Dr/Fernandina Rd intersection. Minor geometric /timing changes have not been able to alleviate the issue. A detailed comparison of the microsimulation volumes and the existing turning movement volumes may be required to verify traffic is not being overassigned to this intersection.
Exit 107/Exit 64	AO27	Under	Under	Under	Over	Spillback queuing from the Exit 106 issues is causing congestion on the ramps at this interchange.
Exit 108-I-126	AO27	Under	Under	Under	Under	
Exit 110	AO46	Under	Under	Under	Over	Issues with the adjacent intersection volumes are causing spillback queuing. An excessive number of vehicles are trying to make a left turn onto McSwain Drive due to the split centroid. This may be able to be corrected by adjusting the routes to the centroid.
Colonial Life	AO24	Under	Under	Under	Under	
Exit 63	AO8	Under	At	Over	Over	Heavy off ramp volumes causing queuing, however, additional signal timing changes may be able to improve the conditions.
Exit 65	AO5	Under	Under	Under	Under	

Simulation Observations and Alternative Modifications

The green line work is the KMZ file used for the simulation observations.

- Exit 101 (Par.Clo) - .KMZ file did not contain WB I-26 off-ramp to southbound Broad River Road, however, it was maintained for the simulation.
- AM Peak Hour - See Figure 1 - interchange operates under capacity
- PM Peak Hour - See Figure $\mathbf{2}$ - interchange operates under capacity

Figure 1 - Exit 101 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 2 - Exit 101 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 102 (Par.Clo) - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 3 - interchange operates under capacity
- PM Peak Hour - See Figure 4 - interchange operates under capacity. Queuing on Columbiana Dr. may be able to be corrected with further signal timing improvements.

Figure 3 - Exit 102 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 4 - Exit 102 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 103 (AO49) - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 5 - interchange operates under capacity
- PM Peak Hour - See Figure 6 - interchange operates under capacity. Queueing on Woodcross Drive may be able to be relieved with further signal timing adjustments.

Figure 5 - Exit 103 (AO49) Simulation - AM Peak Hour

Figure 6 - Exit 103 (AO49) Simulation - PM Peak Hour

- Exit 104 (AO30) - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 7 - interchange operates under capacity.
- PM Peak Hour - See Figure 8 - Eastbound I-26 off-ramp operates at capacity, otherwise interchange operates under capacity.

Figure 7 - Exit 104 (AO30) Simulation - AM Peak Hour

Figure 8 - Exit 104 (AO30) Simulation - PM Peak Hour

- Exit 106 (AO13) - Northbound approach of Burning Tree Dr modified from the .KMZ to ease the movement of vehicles from the westbound off-ramp as well as help with PM queuing issues.
- AM Peak Hour - See Figure 9 - interchange operates under capacity except for the heavy movement from eastbound right turn movement from St. Andrews Road to the on-ramp to eastbound I-26.
- PM Peak Hour - See Figure 10 - interchange operates over capacity at the Fernandina Rd/Burning Tree Dr. intersection which causes spillback queuing onto I-26 and I-20. The Burning Tree Dr. approach combined with the westbound off-ramp traffic making a leftturn onto St. Andrews Road is a very heavy movement and conflicts with the westbound off-ramp right turn onto St. Andrews Road. As more time is given to the Burning Tree Dr approach. This impacts the eastbound off ramp left-turn movement as well as the westbound ramp right-turn movement, causing spillback on those ramps. A detailed comparison of the microsimulation volumes and the existing turning movement volumes may be required to verify traffic is not being over-assigned to this intersection, however, many lane configurations and timing changes were explored with little improvement.

Figure 9 - Exit 106 (AO13) Simulation - AM Peak Hour

Figure 10 - Exit 106 (AO13) Simulation - PM Peak Hour

- Exit 107/Exit 64 (AO27) - Due to queueing in the AM and PM Peak hours on the ramp from westbound I-126 and I-26 where it merged down to 1 lane, 1 lane was dropped on mainline I-26 and a 2 nd lane was merged on from the overcapacity ramp (See Figure 12 for details). Review of the microsimulation assignments may be necessary to ensure a majority of vehicles coming from l-126 are staying on the main through lanes through the interchange, however, the single lane ramp may still be an issue at the merge point.
- AM Peak Hour - See Figure 11 - The I-26 eastbound mainline is over capacity due to the lane drop west of the on-ramp from l-20 westbound. Additional design changes needed to address this issue. Queuing does not extend back into the Exit 106 interchange during the peak hour. Otherwise the interchange operates under capacity.
- PM Peak Hour - See Figure 12 - interchange operates under capacity with the exception of the spillback queuing from Exit 106.

Figure 11 - Exit 107/Exit 64 (AO27) Simulation - AM Peak Hour

Figure 12 - Exit 107/Exit 64 (AO27) Simulation - PM Peak Hour

Exit 108 (AO27) - No geometric changes made from the .KMZ file.

- AM Peak Hour - See Figure 13 - The interchange operates under capacity.
- PM Peak Hour - See Figure 14 Interchange operates under capacity with the exception of the spillback queuing from Exit 106.

Figure 13 - Exit 108 (AO27) Simulation - AM Peak Hour

Figure 14 - Exit 108 (AO27) Simulation - PM Peak Hour

- Exit 110 (AO46) - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 15 - Interchange operates under capacity.
- PM Peak Hour - See Figure $\mathbf{1 6}$ - Interchange operates over capacity at the I-26 westbound off-ramp due to the arterial queuing along US 378. This appears due to an excessive number of vehicles trying to turn left onto McSwain Drive due to the split centroid. Routing changes may alleviate this queuing.

Figure 15 - Exit 110 (AO46) Simulation - AM Peak Hour

Figure 16 - Exit 110 (AO46) Simulation - PM Peak Hour

- I-126 at Colonial Life Boulevard - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 17 - Interchange operates under capacity with installation of signal.
- PM Peak Hour - See Figure 18 - Interchange operates under capacity with installation of signals.

Figure 17 - I-126 at Colonial Life Boulevard Simulation - AM Peak Hour

Figure 18 - I-126 at Colonial Life Boulevard Simulation - PM Peak Hour

- Exit 63 (AO8) - Interchange design similar to new .KMZ file except for the addition of a left-turn bay at the eastbound I-20 off-ramp termini.
- AM Peak Hour - See Figure 19 - interchange operates over capacity along eastbound Bush River Road at the intersection with the westbound I-20 ramps. Traffic signal timing modifications may help the intersection operation. Most vehicles appear to be stacking in the right lane in anticipation of the eastbound I-20 on-ramp.
- PM Peak Hour - See Figure 20 - interchange operates over capacity. However, further signal timing changes may alleviate some of the queuing improving the interchange operations.

Figure 19 - Exit 63 (AO8) Simulation - AM Peak Hour

Figure 20 - Exit 63 (AO8) Simulation - PM Peak Hour

- Exit 65 (AO5) - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 21 - interchange operates under capacity. Eastbound I-20 experiences congestion east of the interchange at the lane drop
- PM Peak Hour - See Figure 22 - interchange operates under capacity.

Figure 21 - Exit 65 (AO5) Simulation - AM Peak Hour

Figure 22 - Exit 65 (AO5) Simulation - PM Peak Hour

RA7 Specific Choke Points:

1. I-26 EB mainline lane drop prior to on-ramp from I-20 westbound C-D road

2. I-126 WB/I-26 WB merge

Reasonable Alternative 8 - Microsimulation Summary (2040 Volumes)

Freeway Segments

Segment	AM		PM		Comment

Interchanges

Exit		AM		PM		
Location	AO	$\begin{array}{c}\text { EB } \\ \text { Ramp }\end{array}$	$\begin{array}{c}\text { WB } \\ \text { Ramp }\end{array}$	$\begin{array}{c}\text { EB } \\ \text { Ramp }\end{array}$	$\begin{array}{c}\text { WB } \\ \text { Ramp }\end{array}$	Comment

capacity due to heavy traffic

from the west of the

interchange\end{array}\right]\)

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \end{gathered}$	WB Ramp	$\begin{gathered} \text { EB } \\ \text { Ramp } \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
						Additional on-ramp capacity needed to ease congestion in the AM. In the PM, heavy westbound off-ramp traffic necessitates additional geometric changes. Some of the westbound off-ramp congestion is due to its interaction with and proximity to Fernandina/Burning Tree Road.
Exit 107/Exit 64	AO28	Over	Under	Over	Under	Ramp from I-26 to eastbound to both I-20 ramps operates over capacity due to the capacity reduction right at the merge point of the CD road onto the mainline of eastbound $\mathrm{I}-20$. This creates extensive queuing back along the I-20 eastbound C-D road onto eastbound I-26. The new .KMZ file shows revised ramp alignments which will need to be evaluated.
Exit 108-I-126	AO28	Under	Under	Under	Under	
Exit 110	AO46	At	At	At	At	Signal timing changes have made some improvement to the operation of the off-ramps, however, further geometric and/or signal timing changes may be necessary to improve the operations of the interchange.
Colonial Life		At	Under	Under	Under	The lane drop in the eastbound direction causes minor congestion.
Exit 63	AO28	Under	Under	Under	Under	
Exit 65	AO3	Under	Under	Under	Under	
E-W Connector at Bush River Road	AO28	Under	Under	Under	Under	

Simulation Observations and Alternative Modifications

The green line work is the KMZ file used for the simulation observations. The gray line work represents the latest provided KMZ file.

- Exit 101 (Par. Clo) - .KMZ file did not contain WB I-26 off-ramp to southbound Broad River Road, however, it was maintained for the simulation. There are some slight alignment changes for the new .KMZ file which should not cause any operation changes.
- AM Peak Hour - See Figure 1 - interchange operates under capacity except the EB onramp which operates at capacity.
- PM Peak Hour - See Figure $\mathbf{2}$ - interchange operates under capacity.

Figure 1 - Exit 101 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 2 - Exit 101 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 102 (Par.Clo) - No geometric changes made from the .KMZ file. There are some slight alignment changes for the new. KMZ file which should not result in any operation changes.
- AM Peak Hour - See Figure 3 - interchange operates under capacity
- PM Peak Hour - See Figure 4 - interchange operates under capacity. Queuing on Columbiana Dr. may be able to be corrected with further signal timing and geometric improvements.

Figure 3 - Exit 102 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 4 - Exit 102 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 103 (AO35) - No geometric changes made from the .KMZ file. Revised .KMZ file changes the locations of the intersections as well as impacts some of the storage lengths. For example, moving the westbound ramp intersection closer to Woodcross Road may negatively impact operation along Harbison Boulevard. Further signal timing changes may be necessary to accommodate the geometric changes.
- AM Peak Hour - See Figure 5 - interchange operates under capacity
- PM Peak Hour - See Figure 6 - interchange operates under capacity except the westbound off-ramp. Further signal timing changes may improve the operations.

Figure 5 - Exit 103 (AO35) Simulation - AM Peak Hour

Figure 6 - Exit 103 (AO35) Simulation - PM Peak Hour

- Exit 104 (AO31) - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 7 - interchange operates under capacity.
- PM Peak Hour - See Figure 8 - interchange operates under capacity. Heavy queuing on NB Jamil Rd and NB Fernandina Rd may be corrected with additional signal timing and geometric changes.

Figure 7 - Exit 104 (AO31) Simulation - AM Peak Hour

Figure 8 - Exit 104 (AO31) Simulation - PM Peak Hour

- Exit 106 (AO13) - Northbound approach of Burning Tree Dr. modified from the .KMZ to ease the movement of vehicles from the westbound off-ramp as well as help with PM queuing issues. Modifications included widening the approach to St. Andrews Road to 4 lanes (double left, through, right). Queuing is evident on the eastbound C-D road leading to the system interchange in AM/PM.
- AM Peak Hour - See Figure 9 - interchange operates under capacity except for the heavy movement from eastbound right turn movement from St. Andrews Road to the on-ramp to eastbound I-26.
- PM Peak Hour - See Figure $\mathbf{1 0}$ - interchange operates at capacity except at the Fernandina Rd/Burning Tree Dr. intersection. Additional signal timing changes may improve arterial operations which currently shows heavy queuing along St. Andrews Road approaching the interchange from the east and west.

Figure 9 - Exit 106 (AO13) Simulation - AM Peak Hour

Figure 10 - Exit 106 (AO13) Simulation - PM Peak Hour

- Exit 107/Exit 64 (AO28) -The I-20 eastbound on-ramp from the I-26 EB CD road operates over capacity and creates heavy queuing conditions on the ramp from I-26 eastbound as constructed in the .KMZ file where it merges to a single lane at the merge point with I-20. The revised .KMZ file shows significant changes to the ramp arrangement of the interchange and will need to be further evaluated.
- AM Peak Hour - See Figure 11 - interchange operates over capacity due to the merge of the CD road onto eastbound I-20.
- PM Peak Hour - See Figure $\mathbf{1 2}$ - interchange operates over capacity due to the merge of the CD road onto eastbound I-20. The I-20 westbound off-ramp to $\mathrm{I}-26$ westbound is at capacity and causes minor congestion at the diverge point.

Figure 11 - Exit 107/Exit 64 (AO28) Simulation - AM Peak Hour

Figure 12 - Exit 107/Exit 64 (AO28) Simulation - PM Peak Hour

- Exit 108 (AO28) - No geometric changes made from the .KMZ file. Revised. KMZ shows a channelized right turn at the intersection of Bush River Road and Morninghill Dr./Ramps to/from I-26 which should help operations. Other changes in the revised .KMZ file include realignment of multiple ramps but they should not have a significant impact on the operations.
- AM Peak Hour - See Figure 13 - The interchange operates under capacity.
- PM Peak Hour - See Figure 14 - Interchange operates under capacity with the exception of the intersection of Bush River Road and Morninghill Dr./Ramps to/from I-26. The offramp experienced spillback queuing. An overlap right turn was added which improved operations so that it operates under capacity. Some minor congestion was observed in the simulation in the westbound direction between Exits 108 and 107 due to weaving.

Figure 13 - Exit 108 (AO28) Simulation - AM Peak Hour

Figure 14 - Exit 108 (AO28) Simulation - PM Peak Hour

- Exit 110 (AO46) - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 15 - Congested conditions along the arterial. Both the northbound and southbound ramps operate at capacity. Additional signal timing and geometric changes may help alleviate this congestion.
- PM Peak Hour - See Figure 16 - Both the northbound and southbound ramps operate at capacity. Additional signal timing and geometric changes may help alleviate this congestion.

Figure 15 - Exit 110 (AO46) Simulation - AM Peak Hour

Figure 16 - Exit 110 (AO46) Simulation - PM Peak Hour

- I-126 at Colonial Life Boulevard - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 17 - Interchange operates under capacity with the exception of at the lane drop on the eastbound ramp approaching Colonial Life Boulevard, which causes minor congestion.
- PM Peak Hour - See Figure 18 - Interchange operates under capacity.

Figure 17 - I-126 at Colonial Life Boulevard Simulation - AM Peak Hour

Figure 18 - I-126 at Colonial Life Boulevard Simulation - PM Peak Hour

- Exit 63 (AO28) - No geometric changes made from the .KMZ file. New .KMZ file has realigned ramps and merge points but significant changes to the operations are not expected.
- AM Peak Hour - See Figure 19 - interchange operates over capacity. However, further signal timing changes may alleviate some of the queuing along the arterial.
- PM Peak Hour - See Figure $\mathbf{2 0}$ - interchange operates over capacity.

Figure 19 - Exit 63 (AO28) Simulation - AM Peak Hour

Figure 20 - Exit 63 (AO28) Simulation - PM Peak Hour

- Exit 65 (AO3) - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 21 - interchange operates under capacity with the exception of the left turn from Broad River Road onto eastbound I-20.
- PM Peak Hour - See Figure 22 - interchange operates under capacity.

Figure 21 - Exit 65 (AO3) Simulation - AM Peak Hour

Figure 22 - Exit 65 (AO3) Simulation - PM Peak Hour

- E-W Connector (AO28) - No geometric changes made from the .KMZ file.
- AM Peak Hour - See Figure 23 - connector operates under capacity.
- PM Peak Hour - See Figure 24 - connector operates under capacity.

Figure 23 - E-W Connector (AO28) Simulation - AM Peak Hour

Figure 24 - E-W Connector (AO28) Simulation - PM Peak Hour

RA8 Specific Issues/Choke Points:

1. I-20 EB C-D road lane drop at same location of on-ramp merge into the I-20 EB mainline.

Reasonable Alternative 9 - Microsimulation Summary (2040 Volumes)

Freeway Segments

Segment	AM		PM		Comment

					hour, this queuing originates at the - 26 EB Off-Ramp at Exit 108 by traffic destined towards EB I-20.
Exit 106-108	Over	Over	Over	Over	Heavy queuing was observed on EB I-26 during both peak hours. This results from traffic going to $\mathrm{I}-20$ EB getting off the $\mathrm{I}-26$ EB Off-Ramp at Exit 108. Heavy queuing was also observed along WB I-26 during the AM peak hour. This results from WB Off-Ramp left turn queues at Exit 106 being gridlocked by traffic on WB St Andrews unable to enter the Exit 106 EB On-Ramp. During the PM peak hour, a combination of diverging traffic at Exit 106 and merging traffic from WB On-ramp at exit 108 is slowing traffic down on WB I-26.
Exit 108-110	Under	Over	Under	Under	During the AM peak hour, queuing was observed on WB I-26 between Exit 108 and proposed E-W Connector system interchange. This results from the westbound Off-Ramp queuing at Exit 106. Queuing was also observed on I-26 WB east of the proposed E-W Connector interchange. This results from queuing on the I-26 WB Off-Ramp at Exit 108. During the PM peak hour, the area where traffic from WB I-126 and WB I-26 merge is congested.
Exit 108 - Colonial Life	Under	Under	Under	Under	The WB I-126 traffic traveling to the E-W Connector to the ramp to WB I-26 results in congestion extending past the Colonial Life interchange during the PM peak hour.
Exit 63-64	Under	Over	Under	Over	During both peak hours, heavy WB offramp traffic causes upstream queuing on WB I-20. The model assignment path shows that majority of the trips on WB I20 do not use the proposed East-West Connector to reach WB I-26., Instead traffic is routed from WB I-20 to Exit 63, travel east on Bush River Road and then get onto WB I-26 I-26 WB On-Ramp at Exit 108(See the Figure below).

					Similarly, majority of the trips between WB I-20 to EB I-26 exit on at Exit 63, travel east on Bush River Road and enter EB I-26 using the on-ramp at Exit 108 (see figure below)
Exit 64-65	Under	Over	Under	Under	During the AM peak hour, heavy queuing was observed on WB I-20. This results from queuing on WB Off-Ramp at Exit 63 by traffic using Bush River Road as a bypass to either WB I-26 or EB I-26.

Interchanges

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
Exit 101	Par.Clo.	Under	Under	Under	Under	
Exit 102	Par.Clo.	Over	Under	Under	Under	During the AM Peak hour, queuing was observed on EB Lake Murray Blvd as a result of traffic backup on the EB I-26 On-Ramp. This backup is caused by severe queuing on EB I-26 mainline.
Exit 103	AO49	Over	Under	Under	Under	During the AM peak hour, the traffic backup on the EB OnRamp caused by the congestion on EB I-26 results in queuing along Harbison Blvd in both the eastbound and westbound directions. The resulting arterial queuing extends in each direction beyond the interchange area.
Exit 104	AO32	Over	Under	Under	Under	During the AM peak hour, the traffic backup on the EB OnRamp causes heavy queuing along the arterial in both the eastbound and westbound directions.
Exit 106	AO15	Over	Over	Over	Under	During the AM peak hour, traffic backup on the EB OnRamp causes heavy queuing along the arterial in both the eastbound and westbound directions. These queuing extends beyond the interchange in both directions. The resulting westbound queue also impacts traffic operation at the westbound Off-Ramp termini intersection, blocking access for the westbound left turn traffic. This in turn causes heavy congestion on the westbound Off-Ramp which extends beyond the ramp and spills back on to WB I-26 mainline.

Exit		AM		PM		Comment
Location	AO	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { EB } \\ \text { Ramp } \\ \hline \end{gathered}$	$\begin{gathered} \text { WB } \\ \text { Ramp } \end{gathered}$	
						Heavy queuing was also observed on the EB on-ramp during the PM peak hour. This queuing blocks eastbound right turn traffic from entering the on-ramp, resulting in congestion along the arterial in the eastbound direction.
Exit 107/Exit 64	Removed					
Exit 108	AO29	Over	Over	Over	Over	Arterial experiences heavy congestion that in turn causes significant backup on both the EB and WB Off-Ramps from I26. These traffic backup extends beyond the ramp and spills back on the mainline.
Exit 110	AO46	Under	Over	Over	Over	During the AM peak hour, the traffic backup on the westbound on-ramp, caused by congestion on WB I-26, results in congestion on the arterial in both the eastbound and westbound directions. During the PM peak hour, due to heavy traffic volume along the arterial, both the EB and WB off-ramps experiences queuing. Mainline traffic flow is not impacted by these queuing.
Colonial Life		Under	Under	Under	Under	
Exit 63	A010	Over	Over	Over	Over	Lack of ramp capacity and heavy traffic along Bush River Road creates traffic backup on both the eastbound and westbound off-ramps from l-20, which propagates beyond the ramps and onto the mainline.
Exit 65	AO3	Over	Over	Under	Over	During the AM peak hour, I-20 WB on-ramp experience backup due to heavy queuing on the mainline. This traffic backup also blocks northbound left turners from entering the ramp,

Exit		AM		PM		
Location	AO	EB Ramp	WB Ramp	EB Ramp	WB Ramp	Comment

Simulation Observations and Alternative Modifications

The greenline work is the KMZ file used for the simulation observations.

- Exit 101 (Par.Clo)
- AM Peak Hour - See Figure 1 - interchange operates under capacity
- PM Peak Hour - See Figure 2 - interchange operates under capacity

Figure 1 - Exit 101 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 2 - Exit 101 (Partial Cloverleaf) Simulation - PM Peak Hour

-

- Exit 102 (Par.Clo)
- AM Peak Hour - See Figure 3 - interchange operates under capacity. However, queuing was observed on EB Lake Murray Blvd as a result of the traffic backup on the I-26 EB OnRamp. This backup is caused by severe queuing on EB I-26 mainline.
- PM Peak Hour - See Figure 4 - interchange operates under capacity

Figure 3 - Exit 102 (Partial Cloverleaf) Simulation - AM Peak Hour

Figure 4 - Exit 102 (Partial Cloverleaf) Simulation - PM Peak Hour

- Exit 103 (AO49)-Simulation file differs slightly from .KMZ file. The original design showed dual right turns and a shared through/left turn lane on the westbound off-ramp approach at ramp termini intersection. Separate left turn and through lanes were modeled instead.
- AM Peak Hour - See Figure 5 - interchange operates over capacity. The traffic backup on the EB On-Ramp caused by the congestion on EB I-26 results in queuing along Harbison Blvd in both the eastbound and westbound directions. The resulting arterial queuing extends in each direction beyond the interchange area.
- PM Peak Hour - See Figure 6 - interchange operates under capacity.

Figure 5 - Exit 103 (AO49) Simulation - AM Peak Hour

Figure 6 - Exit 103 (AO49) Simulation - PM Peak Hour

- Exit 104 (AO32)
- AM Peak Hour - See Figure 7 - interchange operates over capacity. The traffic backup on the EB On-Ramp caused by congestion on EB I-26 results in heavy queuing along the arterial in both the eastbound and westbound directions.
- PM Peak Hour - See Figure 8 - interchange operates under capacity. Heavy northbound left turn volume at the intersection of Piney Grove Road at Fernandina Road will require geometric and signal timing modifications to improve queuing and overall traffic operations.

Figure 7 - Exit 104 (AO32) Simulation - AM Peak Hour

Figure 8 - Exit 104 (AO32) Simulation - PM Peak Hour

- Exit 106 (AO15)
- AM Peak Hour - See Figure 9 - Interchange operates at capacity at the EB Off-Ramp intersection while WB Off-Ramp operates over capacity. The traffic backup on the EB On-Ramp causes heavy queuing along the arterial in both the eastbound and westbound directions. These queuing extends beyond the interchange in both directions. The resulting westbound queue on St Andrews Road also impacts the operation at the westbound Off-Ramp intersection, blocking access for the westbound off-ramp left turn traffic. This in turn causes heavy congestion on the westbound off-ramp that spills back on to the WB I-26 mainline.
- PM Peak Hour - See Figure $\mathbf{1 0}$ - interchange operates under capacity. However, the EB on-ramp experiences heavy queuing which blocks eastbound right turn traffic from entering the on-ramp, resulting in congestion along the arterial in the eastbound direction.

Figure 9 - Exit 106 (AO15) Simulation - AM Peak Hour

Figure 10 - Exit 106 (AO15) Simulation - PM Peak Hour

- AM Peak Hour - See Figure 11 - Interchange operates over capacity. Due to traffic congestion along Bush River Road, both the eastbound and westbound off-ramps from I-26 experiences queuing that extends beyond the ramps onto the mainline.
- PM Peak Hour - See Figure 12 - Interchange operates over capacity. Due to traffic congestion along Bush River Road, both the eastbound and westbound off-ramps from I-26 experiences queuing that extends beyond the ramps onto the mainline.

Figure 11 - Exit 108 (AO29) Simulation - AM Peak Hour

Figure 12 - Exit 108 (AO29) Simulation - PM Peak Hour

- Exit 110 (AO46)
- AM Peak Hour - See Figure 13 - Interchange operates over capacity. The traffic backup on the westbound on-ramp, resulting from congestion on WB I-26, causes in congestion along the arterial in both the eastbound and westbound directions. The resulting congestions extends beyond the adjacent signalized intersections and impacts traffic operation.
- PM Peak Hour - See Figure 14 - Interchange operates over capacity. Due to heavy traffic volume along the arterial, both the EB and WB off-ramps experiences queuing. Mainline traffic flow is not impacted by these queuing.

Figure 13 - Exit 110 (AO46) Simulation - AM Peak Hour

Figure 14 - Exit 110 (AO46) Simulation - PM Peak Hour

- I-126 at Colonial Life Boulevard
- AM Peak Hour - See Figure 15 - Interchange operates under capacity.
- PM Peak Hour - See Figure 16 - Interchanges operates under capacity.

Figure 15 - I-126 at Colonial Life Boulevard Simulation - AM Peak Hour

Figure 16 - I-126 at Colonial Life Boulevard Simulation - PM Peak Hour

- Exit 63 (AO10)
- AM Peak Hour - See Figure 17 - interchange operates over capacity. Severe congestion along Bush River Road creates backups on both the eastbound and westbound offramps from I-20; these backups extend onto I-20.
- PM Peak Hour - See Figure 18 - interchange operates over capacity. Congestion on both the EB and WB off-ramps from I-20 was observed, these backups extend onto I-20.

Figure 17 - Exit 63 (AO10) Simulation - AM Peak Hour

Figure 18 - Exit 63 (AO10) Simulation - PM Peak Hour

- Exit 65 (AO3)
- AM Peak Hour - See Figure 19 - interchange operates over capacity. The southbound left turn onto EB I-20 experiences heavy queuing - dual left turn lanes may improve the operation of this movement. The l- 20 WB on-ramp experiences congestion back onto Broad River Road due to congestion on the mainline. This on-ramp congestion also blocks northbound left turners from entering the ramp, resulting queuing on the NB arterial. Moderate queuing is also observed on the eastbound off-ramp, however traffic flows steadily on EB I-20.
- PM Peak Hour - See Figure $\mathbf{2 0}$ - interchange operates over capacity. Due to heavy traffic volume along the arterial, queuing observed on the WB Off-Ramp extends back towards the mainline.

Figure 19 - Exit 65 (AO3) Simulation - AM Peak Hour

Figure 18 - Exit 65 (AO3) Simulation - PM Peak Hour

- E-W Connector (AO29)
- AM Peak Hour - See Figure $\mathbf{2 1}$-the WB connector operates over capacity due to queuing on the EB I-20 mainline. The resulting traffic backup was along the WB connector, and extended back onto WB I-126.
- PM Peak Hour - See Figure 22 - connector operates under capacity.

Figure 21 - E-W Connector (AO3) Simulation - AM Peak Hour

Figure 22 - E-W Connector (AO3) Simulation - PM Peak Hour

RA9 Specific Issues/Choke Points:

1. I-26 EB to I-20 EB uses Exit 108 Bush River Road and enters I-20 at Exit 63, EB on ramp.

2. I-20 WB to I-26 WB uses Exit 63 Bush River Road and enters I-26 at Exit 108, WB on ramp.

3. I-20 WB weaving between Exit 61 and Exit 63, short distance between E-W connector on-ramp and Exit 61 off-ramp

Appendix H—SCSWM EC (RA10) Volume/LOS

Appendix I-SCSWM RA1 Volume/LOS

RA1 Volume \& LOS

LOS

- $\mathrm{A}(\mathrm{VC}<0.50)$
- B $(0.50<=\mathrm{V} / \mathrm{C}<0.75)$
- $\mathrm{C}(0.75<=\mathrm{V} / \mathrm{C}<1.00)$

D $(1.00<=V / C<1.15)$ - $E(1.15<=V / C<1.35)$ - $F(\mathrm{VC}>=1.35)$

Appendix J- SCSWM RA5 Volume/LOS

RA5 Volume \& LOS

LOS

- $\mathrm{A}(\mathrm{V} / \mathrm{C}<0.50)$
- B $(0.50<=\mathrm{V} / \mathrm{C}<0.75)$
- $\mathrm{C}(0.75<=\mathrm{V} / \mathrm{C}<1.00)$ D $(1.00<=\mathrm{V} / \mathrm{C}<1,15)$ - $E(1.15<=V / C<1.35)$ - $F(V / C>=1.35)$
.05
Exit 108-110

Appendix K— Draft I-20/I-26/I77 Traffic Microsimulation Model Calibration Report

DRAFTTraffic Mic rosimulation Model Calibration Report

I-20/I-26/I-77 Coridor Mana gement Plan Study

Draft - J une 16, 2016

Table of Contents

EXECUIIVE SUMMARY I
1.0 INIRODUCTION 1
2.0 DATA DEVELOPMENT 2
2.1 NETWORK COMPONENTS 2
2.2 TRAFFIC SIGNAL TIMING PLANS 5
2.3 TRAFFIC COUNTS 6
2.4 TRIP TABLES 7
2.4.1 SC SWM Subarea Network and Trip Matrices 8
2.4.2 Origin Destination Matrix Estimation 8
2.5 MODEL PARAMEIERS 10
3.0 MODELCALBRATION 12
3.1 TESTING AND CALIBRATION 12
3.1.1 Initial Model Runs and Error Checking 13
3.1.2 General Calibration Issues. 13
3.1.3 Location Specific Concems. 16
3.2 CALIBRATION STATISTICS 21
3.3 CALIBRATION CRITERIA ERRORI BOOKMARK NOTDERNED.
3.4 CORRIDOR ANALYSIS 23
USTOFTABLES
Table 1. Trip Table Totals 10
Table 2. Vehicle Fleet Mix per Tip Table 11
Table 3. Traffic Flow C a libration Statistics 23
Table 4. Interstate and Freeway Segments within 15% of Observed Travel Speeds 23
Table 5. I-26 Eastbound Volume Comparison 24
Table 6. I-26 Westbound Volume Comparison 26
Table 7. I-26 Ramp Volume Comparison 28
Table 8. l-26 Segment Speed Comparison 33
Table 9. I-20 Eastbound Volume Comparison 36
Table 10. I-20 Westbound Volume Comparison 38
Table 11. I-20 Ramp Volume Comparison 40
Table 12. l-20 Segment Speed Comparison 45
Table 13. I-77 Northbound Volume Comparison 47
Table 14. I-77 Southbound Volume Comparison 49
Table 15. I-77 Ramp Volume Comparison 51
Table 16. I-77 Segment Speed Comparison 56
Table 17. I-126 / SC-277 Eastbound Volume Comparison 59
Table 18. I-126 / SC-277 Westbound Volume Comparison 61
Table 19. I-126 / SC-277 Ramp Volume Comparison 63
Table 20. I-126 / SC-277 Segment Speed Comparison 68
USTOF FG URES
Figure 1. Network Components 3
Figure 2. Signal Timing Plan 5
Figure 3. Count Locations 6
Figure 4. Broad River Road at I-20 18
Figure 5. I-26/I-126 Merge Approa ching the I-20 Interchange 20
Figure 6. I-26 Eastbound Volume Comparison: AM Peak Hour 25
Figure 7. I-26 Eastbound Volume Comparison: PM Peak Hour 25
Figure 8. I-26 Westbound Volume Comparison: AM Peak Hour 26
Figure 9. I-26 Westbound Volume Comparison: PM Peak Hour 27
Figure 10. I-26 Eastbound Ramp Volumes: AM Peak Hour 29
Figure 11. I-26 Eastbound Ramp Volumes: PM Peak Hour 30
Figure 12. I-26 Westbound Ramp Volumes: AM Peak Hour 31
Figure 13. I-26 Westbound Ramp Volumes: PM Peak Hour 32
Figure 14. I-26 Eastbound Speeds: AM Peak Hour 34
Figure 15. I-26 Eastbound Speeds: PM Peak Hour. 34
Figure 16. I-26 Westbound Speeds: AM Peak Hour 35
Figure 17. I-26 Westbound Speeds: PM Peak Hour 35
Figure 18. I-20 Eastbound Volume Comparison: AM Peak Hour 37
Figure 19. I-20 Eastbound Volume Comparison: PM Peak Hour 37
Figure 20. I-20 Westbound Volume Comparison: AM Peak Hour 39
Figure 21. I-20 Westbound Volume Comparison: PM Peak Hour 39
Figure 22. I-20 Eastbound Ramp Volumes: AM Peak Hour 41
Figure 23. I-20 Eastbound Ramp Volumes: PM Peak Hour 42
Figure 24. I-20 Westbound Ramp Volumes: AM Peak Hour 43
Figure 25. I-20 Westbound Ramp Volumes: PM Peak Hour 44
Figure 26. I-20 Eastbound Speeds: AM Peak Hour 45
Figure 27. I-20 Eastbound Speeds: PM Peak Hour. 46
Figure 28. I-20 Westbound Speeds: AM Peak Hour. 46
Figure 29. I-20 Westbound Speeds: PM Peak Hour 47
Figure 30. I-77 Northbound Volume Comparison: AM Peak Hour 48
Figure 31. I-77 Northbound Volume Comparison: PM Peak Hour 48
Figure 32. I-77 Southbound Volume Companison: AM Peak Hour 50
Figure 33. I-77 Southbound Volume Comparison: PM Peak Hour 50
Figure 34. I-77 Northbound Ramp Volumes: AM Peak Hour 52
Figure 35. I-77 Northbound Ramp Volumes: PM Peak Hour 53
Figure 36. Southbound Ramp Volumes: AM Peak Hour 54
Figure 37. Southbound Ramp Volumes: PM Peak Hour 55
Figure 38. I-77 Northbound Speeds: AM Peak Hour 57
Figure 39. I-77 Northbound Speeds: PM Peak Hour 57
Figure 40. I-77 Southbound Speeds: AM Peak Hour 58
Figure 41. I-77 Southbound Speeds: PM Peak Hour 58
Figure 42. I-126 / SC-277 Eastbound Volume Comparison: AM Peak Hour. 60
Figure 43. I-126 / SC-277 Eastbound Volume Comparison: PM Peak Hour 60
Figure 44. I-126 / SC-277 Westbound Volume Comparison: AM Peak Hour 62
Figure 45. I-126 / SC-277 Westbound Volume Comparison: PM Peak Hour 62
Figure 46. l-126 / SC-277 Eastbound Ramp Volumes: AM Peak Hour 64
Figure 47. l-126 / SC-277 Eastbound Ramp Volumes: PM Peak Hour 65
Figure 48. l-126 / SC-277 Westbound Ramp Volumes: AM Peak Hour 66
Figure 49. l-126 / SC-277 Westbound Ramp Volumes: PM Peak Hour 67
Figure 50. I-126 / SC-277 Eastbound Speeds: AM Peak Hour 68
Figure 51. I-126 / SC-277 Eastbound Speeds: PM Peak Hour 69
Figure 52. I-126 / SC-277 Westbound Speeds: AM Peak Hour 69
Figure 53. I-126 / SC-277 Westbound Speeds: PM Peak Hour 70
USTOF APPENDICES
APPENDIX A EXISTING CONGESTION OBSERVATIONS....ERROR! BOOKMARK NOTDEFINED.

Executive Summary

A traffic mic rosimulation model has been developed for use in the l-20/26/77 Comidor Management Plan study to help identify and evaluate congestion management and capacity improvement strategies for the interstate and freeway system in Columbia, South Carolina region. General facts regarding the model include:

- The model is developed and runs in version 4 of the TransModeler simulation software, developed by the Caliper Corporation, which provided the initial network.
- The model includes approximately 110 miles of interstate and freeway, including six system interchanges and 43 service interchanges with the surface street network. The model includes approximately 70 miles of highway, arterial, and local streets.
- The existing 2015 base year model and 2040 future year model includes separate AM peak hour (7:15 AM to 8:15 AM) and PM peak hour (4:45 PM to 5:45 PM) a nalysis periods. Thirty minute "preload" periods are simulated before the a nalysis periods.
- The model incomorates a pproximately130 traffic signals, with signal timing plans provided by SCDOT.
- Almost 300 traffic counts, including directional and tuming movement counts, were used to estimate, calibrate, and validate the model in both the AM and PM peak periods.
- The initial $A M$ and $P M$ seed tables used to develop the existing and future yeartrip tables for autos a nd trucks were provided from a subarea a nalysis of the South Carolina Statewide Model (SCSWM). The subarea's network and matrices correspond directly with the simulation model network and trip tables.
- The trip tables include 170 extemal nodes and 65 centroids for a total of 235 unique entry and exits points in the matrix. The final existing year peak hour AM matrices include over 112,000 a uto and 5,200 truck trips. The final existing year peak hour PM matric es include over 123,000 auto and 4,200 truck trips.

The calibration process of the model entailed identifying issues, making the a ppropriate adjustments and corrections, and ultimately validating the model's traffic flows and travel speeds, along with other traffic conditions such as bottlenecks and queues, to observed count and speed data. Many of the issues identified during calibration were resolved through a process of trial and emror of various techniques and adjustments. Some of the issues identified and adjustments made included:

- Corrections and redevelopment of the seed matrices from the SCSWM planning model which origina lly conta ined higher than actual peak period trip levels.
- Network adjustmentsto reflect how lane queues are informally formed and operated at exit ramps during peak period congestion, and changes to driver behavior regarding stopped gaps and stop times.
- Adjustments to TransModeler'scritical distance parameters affecting lane changing behavior.
- The representation of local streets a nd driveways serving as traffic entry and exits points with stubs and centroid connectors.
- The incomoration of a defined 30 -minute preload period to ensure that suffic ient levels of traffic congestion existed on the network at the start of the model's a nalysis periods.

Several areas of the model required additional focus to resolve identified calibration issues related to travel speed and congestion.

- The Elmwood Avenue Comidor through the Columbia Central Business District (CBD) experienced gridlock conditions due to high volumes of local downtown cross traffic, which was blocking traffic from and to the interstate and freeway system from the larger network. A portion of these local trips, with both trip ends within the comidor, were removed from the trip tables so that operations along the coridor resembled field observations and interstate traffic flowed to and from the CBD appropriately.
- Left-tuming traffic on Broad River Road in the vic inity of I-20 wascreating signific ant queues at the two intersections north of the interstate ramps, resulting in gridlock backups on the interstate. An additional centroid was added to this area to help better distribute loc al traffic from Broad River Road, which has many commercial driveways and local streets in this section.
- Travel speeds and bottleneck conditions on the segment between the interchanges of I26 and I-126 and I-26 and I-20, partic ularly in the westbound direction during the PM peak hour, were not reflecting speed data and field observations. A lack of the significant weaving was not generating the disruption to traffic flow that occurs in this section. Among other adjustments, separate matrices were created fortrips a miving from $\mathrm{I}-126$, with half of the trips exiting to $\mathrm{I}-20$ required to use the right auxiliary ramp as directed by traffic control signs, while the other half or trips could continue in the left lanes and weave across incoming I-26 lanes to the I-20 extra ramps. This additional weaving, along with other adjustments, resulted in the traffic conditions observed in this section.

Traffic flows and travel speedsfor the AM and PM peak hour models were compared to the criteria presented in Table 4 of the FHWA's Traffic Analysis Toolbox Volume III: Guidelines for

Applying Traffic Mic rosimulation Modeling Software, J uly 2004. The models generally met those criteria. The criteria general required traffic flows and travel speeds being within fifteen percent (15%) of observed counts and speeds for at least 85% of cases. The traffic flow criteria differed slightly according to the volume of the roadway. With the exception of one volume class in the PM peak hour missing the 85% ta rget by a single link, both model met criteria targets. Additional criteria for speed-flow conditions and bottlenecks, as determined by a visual audit of the model in operation, were met by a consensus of the model's developers and reviewers.
introduction

1.0 INTRODUCTION

This report describes the development process of a TransModeler traffic mic rosimulation model ("the model") for use in the I-20/26/77 Coridor Management Plan study ("the study"). The study's primary goal is to identify effec tive strategies for congestion relief and improved capacity on I-20, I-26, I-77, I-126, and SC-277 in metropolitan Columbia, South Carolina. The model is intended to establish baseline traffic conditions, in the form of quantifiable performance measures for both the present existing condition and the future no-build condition, in orderto help identify and evaluate such strategies. The two primary phases of the model's development process are data development and model calibration. Data development encompasses the assembly and coordination of the component parts of the model itself. These components include the network and its attributes and associated files; trip tables for both autos and trucks; traffic control a nd signal plans; traffic counts for use in calibration; and operational parameters affecting vehic ular behavior under various conditions. Model calibration is the process of refining the model's operation, prima rily through the adjustment of network attributes, trip tables, and parameters to accurately match observed traffic conditions such astravel speeds and link flows using predefined criteria.

The process of model development and calibration for this project generally followed the resource guidance of FHWA's Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Mic rosimulation Software, published in J uly 2004, although many of calibration parameters discussed in the guidebook are estimated and incorporated by default in the TransModeler software and are adjusted as wa ranted during the calibration. Wisc onsin DOT's calibration criteria for observable metrics, as described in the guidebook, are the source of the primary calibration criteria used to validate the model.

The report begins with a description of the development of model components and their subsequent calibration and concludes with the presentation of calibration statistics.

2.0 DATA DEVELOPMENT

A TransModeler mic rosimulation model is a large collection of component database and executable files that are linked through a common directory structure which can be archived to a zip file, transferred, and then reinstalled on a new computer running TransModeler software. Once installed, the model is initiated within TransModelerthrough a single project file, which for this model is Columbia.smp. The major components of the model are the network files, traffic signal timing plans, trip tables, traffic counts, and pa rameter files. This section desc ribes the development of these major components for the puposes of creating a base yearmodel of existing conditions.

2.1 NETWORK COMPONENTS

The Caliper Comoration, developer of the TransModeler software, provided SCDOTwith an initial model network for this project. This network was based on roadway network attributes previously stored in a geocoded link layerdatabase similar to those used in traditional TransCAD travel demand model networks. The simulation network differs from a conventional link la yer from a travel demand model in that the proportions of the roadway network and its lane, median and intersection configurations are shown in precise detail as to reflect the actual roadway geometry as designed. In addition to providing an accurate illustration of the network, this presentation allows for the visual observation of traffic traversing the network itself. In addition, unlike the traditional demand model networks which consist solely of data base files for links and nodes, the simulation model network includes separate database files for the following:

- Links: the primary roadway between intersections (nodes) whic h consist of segments and lanes;
- Nodes: the intersections of links or the extemal endpoint of a link, in which case it serves as a source point for traffic entering and exiting the network;
- Segments: the component parts of links that distinguish unique attributes of the link at that segment, such asthe number of lanes, direction, and presence of a median;
- Lanes: the individual lanes included in a segment;
- Lane Connectors: the acceptable connecting paths between corresponding lanes entering and exiting intersections and between lanes of connected segments;
- Centroids: the theoretic al sources for some of the traffic entering or exiting the network if such traffic is not entering or exiting from an extemal node;
- Centroid Connectors: the theoretical connection points where traffic from a centroid appears and disappears on a link segment; (There may be multiple centroid connectors for a single centroid.)
- Sensors: the location and dimension of vehicle sensors on the network, typic ally occuming at intersections and related to signal operation, but also capable of recording vehicle data asneeded.

Figure 1 provides an illustration of the simulation network's va rious components. In addition to the depictions of links, la nes and intersections (nodes), the illustration shows the gray lane connectors traversing the intersections and connecting lanes in link segments. The light blue boxes indicate the location of vehicle sensorstied to the traffic signal. Centroids and centroid connectors are depicted in red and the ID number represents the corresponding record in the trip tables. Trip table records also correspond to extemal nodes, which are also identified by an ID number.

Figure 1. Network Components

The initial network from Caliper origina lly included more than 110 miles of interstate and expressway surrounding and bisecting the Columbia metropolitan area, including six system interchanges and 43 service interchanges. In addition to I-20, I-26, I-77, I-126, and SC-277, the network also included approximately 70 miles of surface streets, including connecting portions of five major a rterial routes:

1. Broad River Road (US 176),from exit 97 of I-26 to I-126 via its intersection with Greystone Boulevard;
2. Bush River Road from exit 63 of I-20 to its intersection with Broad River Road;
3. Sunset Boulevard (US 378), from exit 61 of I-20 to exit 110 of I-26;
4. Elmwood Avenue and Bull Street, from I-126 to SC-277; a nd,
data development

5. Two Notch Road (US 1) from exit 74 of I-20 to exit 17 of I-77.

Segments of the surface arterials connected with interstate and freeway service interchanges, as well as the local legs of the most adjacent surface intersections were also included.

With a goal of keeping the emphasis of the model on the freeway system, SCDOTstaff identified approximately 40 miles of surface network as superfluous to this project and eligible for deletion. The network links identified for removal include local road stubs attached to surface arterials, frontage roads, and some downtown streets. Other stub links were shortened ordisc onnected from one a nother, effectively becoming stubs. The stub links that remain in the network serve as the entry points for traffic entering and exiting the system, along with supplemental centroids and centroid connectors that load traffic from multiple local surface streets not adjacent to interstate and freeway ramps.

Caliper produced the initial network from a transformation of a conventional line and node layer network with limited editing. While most of the network attributes such as geographic location, lane configuration and connectivity were correct, given the size and complexity of the network, many details of the network required refinement and correction. Using underlying aerial imagery asa guide, the network wasedited and refined to reflect the actual geometries and attributes of the network as accurately as possible. Network editing was continuous through the model development and calibration process. Initial editing began upon receipt of the model files and in conjunction with network revisions incorporating SCDOTs red-line edits of the extended surface network.

The network was further refined to ensure compatibility with the SCSWM's subarea network, partic ularly the location of extemal nodes and centroid connectors. The geometry and lane configuration of intersections were again reviewed and refined during the installation of traffic signal timing plans and again as directional and tum movement counts were appended to the network. As trip tables were introduced and the model simulations started, unusual traffic congestion pattems, partic ularly at individual intersections, revealed additional network emors and areas needing refinement. Reviews of the completed model by the larger model team identified additional corrections, including the incorporation of additional centroids or extemal nodes to properly accommodate traffic at local legs of ancillary intersections.

The bulk of network edits, corrections and revisions involved the position and length of lanes and the application of lane connectors at intersections and between link segments. Common corrections and edits included:

- The creation or revision of tum lane pockets at intersections, particula ly in regard to free right tum islands and the length and starting point of tum lanes;
- The actual length of individual lane queue storage, partic ula ly on exit ramps where vehic le queues extend into the median orbeyond the designated lane stripes;
- The correct configuration of la ne connectors through an intersection, both at the upstream and downstream locations, partic ularly for left tums and shared through and tum lanes;
- The configuration and location of lane connectors on lane origins a nd lane drops on interstates and freeways;
- The exact curvature and sha pe of iregularly shaped intersections and their individual approaches.

Stantec

data development

- The placement of stop bars, yield signs and sensors at intersections;
- The placement of centroid and centroid connectors to correspond with the South Carolina Statewide Travel Demand Model (planning model).

2.2 TRAFFC SIGNALTIMING PLANS

SCDOTprovided timing plansfor approximately 130 traffic signals located within the model network. These plans were input into the model using TransModeler's Intersection Toolbox, and are mainta ined within an intersection control plan file. In locations where timing plans vary between the AM and PM peak hours, both plansare included and used, respectively. While most signalsoperate independently, coordinated timing planswere included for the Elmwood Avenue, Bush River Road, and Two Notch Road comidors. While a few signals are pre-timed, most signal feature some degree of traffic actuation, in connection with the vehicle sensors embed in each lane connected to the intersection. Figure 3 presents an example of a timing plan as presented in TransModeler's Intersection Toolbox.

Figure 2. Signal Timing Plan

As previously stated the processing and testing of signal timing plans offered an additional opportunity to review the geometry of the intersection and its approaches against underlying aerial imagery. This included verific ation of the placement of lane connectors, signal detectors, stop bars, and yield signs. Unsignalized intersections are also included in the intersection control file and these intersections were also reviewed to ensure all traffic controls such as stop bars and yield signs a re correctly entered.

2.3 TRAFFC COUNTS

For the purposes of model calibration and validation, traffic counts were collected from several sources:

- Peak Period Tum Movement Counts (TMCS):
o 168 locations collected for this project in May, 2015;
o 32 locations provided by SCDOT, collected in April, 2015;
- 48-Hour Ramp Tube Counts:
o 63 location collected for this project in May, 2015;
o 12 locations collected for the Carolina C rossroads project in April 2015;
- 48-Hour Ma inline Interstate and Freeway Counts:
o 8 locations collected for this project in May, 2015;
- 9 locations collected by SCDOTfrom Automatic Traffic Recorders (ATR), recorded in May, 2015.

Figure 3 provides the location of the counts recorded in the model's link database and in the tum movement files.

Figure 3. Count Locations

With the exception of the mainline ATR counts, all countswere recorded in 15 minute increments and covered the complete AM (6:00 AM to 9:00 AM) and PM (3:00 PM to 7:00 PM) peak periods established in the SCSWM. Fifteen minute inc rements from the mainline counts were analyzed to determine four time parameters used in the development of the model:

1. The consecutive 60 minute inc rement with the highest trips per peak hour:
a. AM peak hour: 7:15 AM to 8:15 AM;
b. PM peak hour. 4:45 PM to 5:45 PM;
2. The percentage of peak period trips occuming within the peak hour.
a. AM peak hour: 43\% out of the 3 hourAM peak period (6:00 AM to 9:00 AM);
b. PM peak hour. 30% out of the 4 hour PM peak period (3:00 PM to 7:00 PM);
3. The distribution of the traffic peak within the peak hour, per four consecutive 15 minute inc rements:
a. AM peak hour: $24 \%, 25 \%, 26 \%, 23 \%$;
b. PM peak hour: $25 \%, 27 \%, 26 \%, 22 \%$;
4. The percentage of tripsoccuring in the 30 minute preload period, as compared to the peak hour total, pertwo consecutive 15 minute increments:
a. AM preload period: $17 \%, 20 \%$;
b. PM preload period: $21 \%, 26 \%$.

AM and PM peak hour TMC's are stored in AM and PM tum movement files which can be queried using TransModeler's intersection toolbox. Mainline and ramp tube counts are appended to the model network's link database on a directional basis. Separate counts are included for all traffic and fortrucks, where truck counts were available. Using a procedure in TransModeler, the total counts of all tum movements were aggregated to their respective approach link. For interstate and freeway ramps without tube counts, these aggregated counts were also a ppended to the model network's link database.

Aspreviously stated, as tuming movement counts were entered at each intersection, the geometry of the intersection as well asthe intersection's approaches were reviewed again against underlying aerial imagery. Similarly, the geometry of ramps was also reviewed ascounts are entered.

2.4 TRIP TABLES

The simulation model contains several trip tables, also refered to as trip matrices. Trip tables exist for each AM and PM scenario, with a row and column for each extemal node and centroid in the network. Each cell in the trip tables contains the total number of vehicles traveling along the network between that partic ular pair of extemal nodes or centroids. The trip tables all share the same dimensions, with 235 rows and columns, represented in the network by 170 extemal nodes and 65 centroids. Trucks and autos each have separate trip tables with their own fleet characteristic sand separate trip tables exist for the 30 minute preload periods and the 60 minute peak hour a nalysis periods.

Stantec

data development

2.4.1 SCSWM Subarea Network and Trip Matrices

The simulation model trip tables were developed from subarea trip matric es output from the SCSWM planning model. The row and column ID's from the subarea trip matric es correlate exactly with the row and column ID's in the simulation model trip tables. The subarea trip matrices represent the select geographic area of the larger SCSWM network that correspondsto the simulation model network, with the similar location of extemal nodes a nd centroids in both networks.

The process of coordinating the simulation network with the subarea network from the planning network involved several steps. The first step was development of the simulation network sub area within the larger SCSWM network. The subarea network must encompass enough area and link connectivity for the SCSWM to properly distribute and assign trips while also reflecting the desired limits of the simulation model network. Further, the subarea network must reflect the greater detail and gra nula rity of the simulation model network while preserving the larger flexibility of the SCSWM to distribute traffic effec tively over the larger region.

The coordination of the two networks was a chieved by overlaying the simulation model network over the planning network and zone structure and identifying the specific links in the planning network that corresponded with the extemal nodes of the simulation model. This process was relatively straightforward beca use both model networks conta ined the same corresponding links. Identifying centroid connectors within the SC SWM was more complex. It was importa nt to ensure that all trips generated from one of the SCSWM's centroids were distributed entirely within the subarea network area. This wasimportant to ensure that any intrazonal shifts in traffic over time are reflected in the current and future year subarea matrices. Therefore, in cases where some centroid connectors connected within the network and other connectors extended outside the network area, the latter connectors were either moved within the model area or the zone was split to more accurately correspond with the model area limits. The coordination of the two networks and trip tables and matrices wasan iterative process. As the trip tables for the simulation model wastested and reviewed, new subarea networks a nd trip matric es were required to reflect individual areas where further network definition was needed. The final dimensions of the trip matric es are 235×235, with 170 extemal nodes and 65 centroids.

2.4.2 Origin Destination Matrix Estimation

Originally developed as a daily model, the SCSWM was adapted for this project to provide AM and PM peak period subarea trip matrices to reflect the peak directionality for both the AM and PM peak periods. These trip matrices serve as the seed tables used in the development of AM and PM peak hour trip tables for the simulation model. The seed tables are inputs along with traffic counts in TransModeler's Origin Destination Matrix Estimation (ODME) procedure. The ODME procedure is an iterative assignment process that uses a lgorithms to estimate the trip matrices which, when assigned to the network, most c losely match the observed traffic counts recorded in the network layer.

In regard to inputs into the ODME process, traffic counts are the most influential element of the ODME process, as assignment iterations will continue until the best fit between an assigned trip matrix and observed counts is established. However, seed matrices that a ccurately reflect the true distribution of trips within the study a rea increase the likelihood of the ODME process estimating a good fit more quickly in fewer iterations.
data development

The assignment produced from the ODME process is a nalogous to the assignment produced in a conventional tra vel demand model. It uses general a ssumptions regarding capacity constra ints on the network to establish tra vel speeds and trip times, and ultimately trip paths. The ODME assignment effectively illustrates the best theoretic al simulation outc ome available using the trip tables estimated, assuming basic and predictable operating conditions. In fact, the implementation of more detailed traffic operational rules and behaviors during the simulation runs substantially affect traffic flows and operations, revealing which aspects of the model network and operational assumptions need to be corrected or refined.

Because the AM and PM subarea trip matric es reflect la rger peak periods, the subarea matrices were factored to reflect the smaller portion of trips occurning in the peak hour before applying the ODME procedure. This adjustment helped more accurately define the magnitude of trips estimated. The factors used were calculated from comparing peak period and peak hour counts from the mainline count data. For the three hour AM peak period, the peak hour factor was 43% of total trips. For the four hour PM peak period, the factorwas 30% of total trips.

Given their distinct trip pattems, truck matrices were estimated separately from autos. While the planning subarea matricesincluded trip matricesfor both medium and heavy trucks the majority of tuming movement counts did not distinguish between truck classes. Therefore the two truck classescould not be estimated separately. However, the difference between the subarea trip matrix totals for medium and heavy trucks were compared to the available classific ation data collected from the mainline counts and it was determined that the proportion of medium to heavy trucks was reasonable and could be preserved. Therefore, while the ODME process for medium and heavy trucks used the same count data and produced a single truck trip table, the proportion of medium trucks to heavy trucks within each cell was preserved by factoring the cells of the estimated trip table by the respective proportion of medium to heavy trucks from the subarea trip matricesto create separate trip tablesformedium and heavy trucks.

The first ODME process for total traffic incorporated all available counts in the estimation, including the individual tum movements at intersections. However, the output trip tables and the assoc iated assignments of these trips to the network fit very poorly with the mainline and ramp tube counts, which were primary and critic al metrics. It appeared that the high number of tum movement c ounts on the surface street network effectively diluted the estimation process's ability to prionitize interstate and ramp flows. As a result, the ODME process converged at a lower threshold of accuracy as it attempted to equally incorporate all counts regardless of location or type.

In response to this result, only mainline and ramp tube counts and tum movement volumes aggregated to ramp links were used during the next iteration of the ODME process. Individual tum movements were not included in the process. With fewer constraints a nd a priority given to matching interstate and ramp counts, the resulting ODME assignment signific antly improved the fit on the mainline interstate and freeway system, closely matching their respective counts. However with few counts included on the surface network, the fit of the ODME assignment on the surface street network needed improvement in many location. Therefore an iterative process was used in which a small number of surface links with the worst fit between counts and ODME assignment were identified. At these locations, tum movement counts were aggregated to the link, and the ODME process run again, with counts at these locations included in the process.

Stantec

data development

With each iteration of this process, the overall fit between counts and ODME assignment improved. The process continued formultiple iterations of additional links until the fit between the ODME assignment and all mainline and ramp counts (including aggregated tum movement counts) met the criteria for the overall GEH statistic presented in the FHWA's Traffic Analysis Toolbox Volume III: Guidelines. Specific ally, the percentage of links with a GEH statistic under 5 must be greater than 85 percent, and the GEH statistic for the sum of all link flows must be under 5. The GEH statistic is desc ribed in further detail in Section 3.2. Setting this threshold was intended to include enough counts in the ODME process to produce trip tables that reflect the interstate and freeway flows without overwhelming it with too many counts that could have the effect of deprioritizing the interstates and freeways. Further, it was understood that additional ODME iterations were likely to occur once the testing and calibration phase of the simulation model.

Table 1 presents the trip totals from the subarea matrices before and afterfactoring to peak hour, and the original and final ODME estimated trip tables used in the simulation model.

Table 1. Tip Table Totals

AM Peak Hour			
	Auto	Medium Truck	Heavy Truck
SCSWM Subarea (3-hour Period)	242,393	9,677	2,489
43\% of Subarea (Peak Hour)	104,229	4,161	1,070
ODME	112,068	3,953	1,229
Final (adjusted)	112,884	3,953	1,229
PM Peak Hour			
	Auto		Medium Truck
Heavy Truck			
SCSWM Subarea (4-hour Period)	381,057	12,050	3,097
30\% of Subarea (Peak Hour)	114,317	3,615	929
ODME	123,539	2,993	1,250
Final (adjusted)	123,838	2,993	1,250

2.5 MODEL PARAMEIERS

TransModeler includes pa rameters for various components and procedures occuring in the model, including aspects of the vehicle fleet, roadway characteristics, route choice, and driver behavior. TransModeler initially sets these parameters to default values that can be adjusted according to available local information. While most parameter adjustments oc curduring the testing and calibration and phase, the following parameter adjustments made during initial develop include:

- Vehicle fleet: TransModeler includes several vehic le classes to represent the trips simulated in the model. The distinct classes look and operate differently based on their class a ttributes. The model uses separate trip tablesfor autos, medium and heavy trucks.

The fleet mix for the auto trip tables wastherefore adjusted to reflect the absence of medium and heavy trucks in those partic ular tables. The default distribution of high, mid and low performance passengercars; pickups and vans; and motorcycles was maintained, as the registration data provided by SCDOTdid not distinguish between the model type or performance class of passenger vehic les. Table 2 presents the vehic le fleet mix for the trip tables.

Table 2. Vehicle Reet Mix per Trip Table

	Trip Table		
Vehicle Class	Autos		Truck 1
Truck 2			
High Performance Passenger Cars	32%		
Medium Performance Passenger Cars	36%		
Low Performance Passenger Cars	21%		
Pickups, Vans, and SUVs	10%		
Motorcycles	1%		
Single-unit Trucks		100%	
Trailer Trucks			100%

- Heavy truck appearance: TransModeler's default configuration for tractor trailers has a much longer cab section than is typic al, resulting in the joint of the truck being articulated in the middle. The initial settings for the appearance heavy trailer trucks were adjusted to reflect a more standard truck configuration with the articulation in the front.
- Road Classes: As this model focuses primarily on the interstate and freeway system, an additional freeway class was added to help distinguish between segments of rural interstates, suburban interstates, and complex urban freeway segments. These classes represent not only distinct posted speeds but also distinct free flow speed parameters.

Other parameter adjustments made during the testing and calibration phase are disc ussed in the next section.

Stantec

3.0 MODEL CAUBRATION

For the purposes of this simulation model exercise, the term model calibration is used in its most expansive sense to mean all of the adjustments and refinements that occur after all of the model components have been initially developed and assembled. It also refers to the validation of the model's calibration, as compared to specific metrics and conditions. Section 3.1 addresses the adjustments that were made to achieve a calibrated model. Sections 3.2 and 3.3 present the calibration criteria and statistic sfor the model.

3.1 TESTING AND CALBRATION

Once all model data components were prepared and organized within the simulation project file, the testing and calibration process began. The calibration process is an iterative process of running the model and making adjustments and refinements to the various model components until the model meets the specified criteria for reflecting observed conditions, as measured via visual audit and quantifiable metrics. A visual audit involves watching simulations as they run in real time to verify realistic traffic operations in general and specific observed conditions, such as identified bottlenecksand queues at specific loc ations. Visual aud its initially precede the comparison of quantifiable metrics, since it is literally the "eye test" that must be passed before quantifiable metricsare of value. Howevervisual audits are also a formal aspect of the calibration criteria and therefore occur as part of the final model validation as well.

The process of visually inspecting the simulations asthey ran initially began by determining whether the traffic loading and volume in general met reasonable expectations based on field observation notes a nd common sense. Upon initiation, the model begins by establishing a preload condition. During this period, traffic is loaded onto the empty network until TransModeler has determined that suffic ient traffic exists to reflect the conditions at the start of the analysis period. This determination is based on an algorithm involving the duration of the model period the total traffic in the trip tables, and the size of the network. Once TransModeler determines that the preload condition has been met, the a nalysis period begins, with vehicles from the trip table loaded onto the network at the proportional rate established in the scena io settings. Trips for the AM and PM models were loaded at varying rates over four 15 minute increments according to the distribution determined from the a nalysis of traffic counts:

- AM peak hour: $24 \%, 25 \%, 26 \%, 23 \%$;
- PM peak hour: $25 \%, 27 \%, 26 \%, 22 \%$;

In this manner, the peak traffic demand within the peak hour could be captured in the model as traffic wasloaded onto the network. However, as the distributions within the peak hours indic ate, the peaking characteristics for both AM and PM peak hours were relatively flat, which should be reflected in relatively even levels of traffic conditions throughout the analysis period.

Stantec

3.1.1 Initial Model Runs and Eror Chec king

One of the first issues to a rise when initially running the model was how quic kly the surface network intersections became overwhelmed during the early period of the model. Conversely, traffic on the interstates and freeways was light, primarily due to bottlenecks at intersections preventing traffic to access the interstates and freeways in signific ant volumes. While it was eventually determined that a post-processing issue in the SCSWM'ssubarea extraction process had resulted in excessive traffic volumes, a strategy was initially devised to investigate the bottlenecks that were oc curing at intersections in the order that they arose, as soon asthey began to appearin the simulation period. This strategy had the immediate benefit of revealing previously undetected emors in network coding and signal plans, as the exc essive trip volumes quickly exacerbated and identified these problems first. Aserrors were detected and corrected, subsequent simulation runs would identify new hot spots as upstream bottlenecks were resolved and downstream bottlenecks resulted. Ultimately the processing issues from the SCSWM's subarea extraction were identified and corrected, and traffic volumes from subsequent trip tables decreased to the generally reasonable levels. However, the initially high traffic did prove valuable in quickly identifying network and traffic control errors.

Another source for checking errors is the wa ming filesthat are produced by TransModeler before and after model runs. These files often include wa mings that a re ultimately irelevant, such as a wa ming for a non-standard signal plan or trip path errors for trips that do not exist in the trip table. However, the wa ming files also include relevant problems such asmissing lane connectors ordiverted trips. While most of the relevant problems are resolved early in the development process, as new edits are made, review of the waming files helpsidentify new problems.

3.1.2 General Calibration Issues

Once the issue with the subarea trip tables from the SCSWM had been resolved and specific network and signal errors were identified and corrected, the total traffic loadings decreased and traffic operations began to resemble reasonable expectations. Identifying and addressing issues with less readily apparent resolutions then bec ame the focus the calibration process. During this phase, comparisons of model outputs for speedsand traffic volumes observed data became an integral aspect of the review process, in combination with visual inspection of the model simulations. Below are a summary of the general issues that were identified addressed during the calibration phase.

1. Exit ramp queues: At many intersection exit ramps, traffic queues extended beyond their observed or reasonable limits despite matching the traffic counts on the ramps. In many cases, this was the result of distinct differences between the offic ial pavement markings and the actual queuing pattems at these exits. For example, at Exit 9B on southbound I77 at Leesburg Road, the dual lane queue, identifiable by two distinct elongated pavement stains, extends at least 200 feet beyond the last lane stripe delimiter. In addition to increased storage capacity, this longer queue separation results in the more efficient sorting of left versus right-tuming vehicles. A similar issue is the presence of a separate, informal right-tum queue at the end of a ramp, despite the lack of an official lane stripe delimiter. (for example, Exit 51 on westbound I-20). These distinctions between official and informal lanes may only occur during peak congestion periods, but their impact on the ultimate flow and operation of the ramp and intersection is signific ant. Therefore at ramp locations where traffic queues in the model exc eeded observed limits,

Stantec

and where indications suggested that lane queues differed from official markings, the network was edited to reflect how the queues were realistically forming.
2. Stopped gaps and times: Related to establishing proper queue lengths on ramps and surface intersections in general, two driver beha vior parameters were adjusted to reflect the more compressed nature of peak hour queues and inc reased volume through stop controlled intersections. First, the mean distance between stopped light vehic les was reduced from 8 feet to 6 feet. The 4 foot standard deviation and the 12 foot mean stopped gap behind trucks was not adjusted. Second, the distribution of stopped time at stop controlled intersections where there is no competing traffic was adjusted on average of 0.2 seconds. These two adjustments decreased the follow up time between vehic les at intersections, thereby increasing the volume through the intersections and decreasing queue backups.
3. Critical Distance: Aspart of the methodology directing driver behavior, the "critical distance" parameter sets the general distribution of distance from a downstream intersection orpath diversion at which point a vehicle must seek to be in the correct lane in order to mainta in the correct path through that intersection ordiversion. A short critic al distance could cause vehiclesto delay changing into the correct lane until the last moment, while a longer critical distance could find vehic les prematurely queuing in a slower lane in antic ipation of tum far ahead. TransModeler mainta ins separate critical distance distributions for streets and freeways. In the case of this model, visual inspections of the simulation found multiple incidents of interstate and freeway traffic queuing early in order to make future ramp movements. The consequences were signific ant imbalances in volume and lane speed despite signific ant distance from exit ramps. At one location on westbound I-20, mainline traffic queuing too early for the downstream SC-277 ramp prevented vehicles entering from Two Notch Road from merging correctly. To resolve this issue, the distribution of the critic al distance was decreased by roughly 750 feet, to between 500 and 2,750 feet.

Conversely, at one location on northbound Broad River Road, the critic al distance distribution wasincreased through the use of a local parameter so that the queue to tum left onto Bush River Road would form properly without excess conflict at the intersection from late lane changers.
4. Multiple local streets and driveways: A specific challenge of coordinating of the simulation model with the SCSWM is reflecting the distinct difference in how trips are loaded onto the two respective networks. Many of the entry and exit points in both the simulation model and the subarea network of the SC SWM are extemal nodes that represent endpoints of actual roads. However, other entry points are represented by centroids via centroid connectors located within intemal areas of the network. Unlike extemal nodes, centroid connectors a re theoretic al entry points without physic al attributes. Cars simply appear on the network at these locations. The reason for this is that as a large scale planning model, the SCSWM mustaggregate the individual driveways and local roadsconnecting to major streets and highways. In the simulation model, centroid connectors were generally located where they occur in the SCSWM. In many cases, centroid connecters were attached to physical stubs of local roads so that they entered the network through controlled intersections. However, if the volume of traffic for the centroid in question signific antly exceeded the capacity of such a local

Stantec

intersection, centroid connectors were attached directly to the network but away from intersections so as not to disupt their operation. Also, centroids often have multiple connectors. In some at intersections where commercial driveways or a low volume local street is included in the traffic signal with a higher volume street included in the network, centroid connectors were employed to distribute some traffic to those legs of the intersections. However, in a few cases where this approach proved unworkable, the networks of both the SCSWM and the simulation models had to be edited and the trip tables expanded to create new distinct extemal nodes. This step would require the rerunning of the SCSWM subarea extraction process and the development of new ODME trip tables.
5. Preload Period: As a part of its standard operation, TransModeler begins each simulation by "preloading" the network with trips based on volumes and trip pattems from the model's trip tables. This is done so that vehicles enter a network that reflects the real conditionsoccuring when the official analysis period begins. The preload period is supposed to continue until a "preload condition" has been met, signifying that the network is suffic iently congested. However, over the course of the calibration process, it was generally observed that at the start of the a nalysis period, traffic conditions were relatively light and that expected congested conditions did not occur until late into the analysis period. It wastherefore decided to add a static 30 -minute preload periods with trip tables reflecting the traffic occuming before the AM and PM peak hours. TransModeler's preload procedure still begins the simulation, but now begins before the static 30 minute preload period. The 60 minute peak hour a nalysis periods remain the same. The preload trip tables were proportioned from the peak hourtrip tablesto match the observed volumes of the two 15 minute increments occuring before each of the AM and PM peak hours.

The introduction of the static preload periods had the desired effect of creating congestion build up similar to observed conditions. The peak of congestion now occurs towards the middle of the peak hour and ista pering towardsthe end of the simulation period.
6. Manual Matrix Adjustments: The intention of using the SCSWM subarea seed tables and the ODME process to develop the trip tables is to have a transparent and repeatable methodology. In comparison, manual altemations to the cells in the table, in orderto supplement or reduce traffic volumes between particular points, are independent and arbitrarily estimated outside of a ny formal methodology goveming trip generation and distribution. They should be limited because such alterations must be consistently accounted for and reflected in the future yeartrip tables. However, the SCSWM and the ODME process are not exact in their ability to create trip tables that produce accurate traffic flows in a mic rosimulation. Partic ularly in such a large and complex model network with so many counts and point of entry, some manual a djustments were ultimately required to achieve the critical mainline volumes on the interstates and freeways necessary to match and reflect the level of congestion recorded in counts and in field observations.

Given the comparatively lower volume of trucks compared to passenger vehicles, no trips in the ODME truck matrices were adjusted. For the AM auto trip ta ble a total of 25 trip pairs representing 16 entry points and 16 exit points were adjusted from the final

Stantec

ODME matrix. For the PM auto trip table, 34 trip pairs representing 11 entry points and 19 exit points were adjusted. Trip adjustments were both positive and negative. Most trip reductionsoccured among trip pairs located along the Elmwood Avenue coridorin the Central Business District (CBD) downtown, while most additions represented trips from the CBD onto the larger interstate network via I-126 and SC-277. A further explanation of these adjustments occurs in the next section.

3.1.3 Location Specific Concems

As the overall simulation output data began to fit relatively well with recorded traffic counts travel speeds, and the simulation generally appeared reasonable upon visual inspection, three geographic areas in the model remained problematic and required particular intervention. The issues and resolutions regarding these a reas are presented below.

1. Central Business District: The CBD is incorporated in the model through Elmwood Avenue and Bull Street, which connect to $\mathrm{I}-126$ and SC-277 respectively. Stubs from side streets, some camying signific ant volumes of traffic, are connected to Elmwood, along with their associated traffic signals. Given that the comidor is in the CBD, a large a mount of local trip paths initially crossed and traversed the relatively short and dense Elmwood comidor. These local CBD trips were only on the model's network fora few blocks but effectively overloaded Elmwood Avenue between Assembly Street a nd Bull Street, creating a grid lock situation in both the AM and PM peak periods. Despite the inclusion of a coordinated traffic signal plan for Elmwood Avenue, vehicle queues and vehicles waiting to queue in theirtarget lanes effectively blocked traffic from both entering and traversing the comidor. This resulted in through traffic and CBD traffic destined for the interstate system via I-126 or SC-277 being severely restricted and delayed, and backups on inbound traffic extending far along both I-126 and SC-277.

A possible explanation for this situation wasthe sheer volume of the CBD traffic and how it was assigned to the subarea matrices via the SCSWM's subarea extraction process. Perhaps a larger CBD grid network, with more directionality a nd interconnectivity to distribute CBD traffic was required. However it was determined that as the operation of the CBD was not the focus of the model, the best solution given the network and count data a vailable wasto manually remove enough of the purely locaICBD trips from the trip tables so that the Elmwood Avenue comidorwould appearto function as depicted in field observations. With suffic ient local trips removed from the trip tables, traffic congestion in the comidor remains heavy but does not ultimately degrade into a paralyzed gridlock state. However, given persistently low volumes on I-126 and SC-277 away from the CBD even after the gridlock conditions in the comidor were resolved, some supplement traffic was added to peripheraI CBD links to destinations along the I-26 and $\mathrm{I}-20$ comidors. These trips helped ensure that enough traffic flowed on $\mathrm{I}-126$ and SC277 to create conditions identified in field observations and recorded in counts and link travel speeds.
2. Broad River Road at I-20: Broad River Road is one of the parallel arterial comidors included in the model. It parallels I-26 from Exit 97 on the northwest to I -20, continuing to a point east of Greystone Boulevard, which connects it to I-126. As major urban arterial, Broad River Road serves dense commercial and residential development particular around its interc hange with l-20, where traffic conditions are very congested. A particular
problem in the PM model wasleft-tuning westbound traffic on Broad River Road directly north of $\mathrm{I}-20$, backing up and creating gridlock that extended onto the westbound $\mathrm{I}-20$ exit ramps. Initially traffic destined for the west side of Broad River was queuing at a single intersection, Briargate Circle. However, in reality this left-tuming traffic is distributed between multiple driveways and local streets between I-20 and Zmalc rest Drive. To resolve the issues associated with the channeling of left tums, Seminole Road and an additional centroid between Seminole Road and Zmalcrest Drive (see Figure 4, red oval) was added to the SCSWM subarea network and the subarea a nalysis rerun, producing new trip matric es. These additional links distributed the left tums a mong multiple locations, reducing left tum queues at Briargate Circle to reasonable levels. On the south side of I-20, Bakersfield Road, which had previously been represented by a centroid connecter, wasconverted to a road stub and the traffic signal plans at this intersection were installed (see Figure 4, purple oval). The addition of this signal helped complete a more accurate representation of traffic operations at the critic al comidor.

Figure 4. Broad River Road at l-20
3. Westbound Interchanges of I-26, I-126 and I-20: During the PM peak hour simulation, traffic volumes generally reflected counts along the comidorfrom westbound I-126 and its merge with westbound $I-26$, to the $I-26$ interchange with $I-20$. However, travel speeds in this comidor remained stubbomly high and did not reflect travel time data that indicated a severe slowdown astraffic merged and weaved within a 1-mile 5-lane section. An analysis of trip paths in both the SC SWM and the simulation model's path file demonstrated that larger trip pattems through this area were generally appropriate. Traffic from westbound I-26 through the I-20 interchange generally continued westbound on $\mathrm{I}-26$ or exited to eastbound $\mathrm{I}-20$, while traffic from $\mathrm{I}-126$ continued on $\mathrm{I}-26$ or exited to westbound $\mathrm{I}-20$. Further, ramp volumes at the I-20/I-26 interc hange were high but within reasonable range with counts. The incongruity in observed versus model travel speeds did not appearto be due to a lack of traffic volume or incorect trip paths, but ratherthe

Stantec

absence of signific ant weaving as vehic les positioned themselves across the five lanes in this section.

A review of the network settings and traffic pattems in this area determined factors possible factors contributing to the relative lack of weaving and higherthan observed travel speeds. First, and most signific ant was the path choices of vehicles approaching the section from l-126. Second was a lowerthan expected volume of traffic entering from the Bush RiverRoad westbound entrance ramp. The third factorwasthe project settings for lane speed variability.

The first fac tor related to trips from I-126 bound for I-20. Traffic signs direct drivers on I-126 that are exiting to eastbound and westbound I -20 to use a an auxiliary exit ramp positioned on the right side of the flyoverthat conveys the traffic merging from I-26. By using this side ramp, the exiting traffic from I-126 is positioned to the right of the I-26 traffic as it merges with $\mathrm{I}-126$. (See Figure 4, ramp in red.) After diverging from mainline $\mathrm{I}-126$, this auxiliary ramp first merges with traffic from a Bush River Road entrance ramp before realigning with the other la nes of I-26 briefly before becoming an exit-only la ne for the I20 eastbound ramp. In contrast, the left lanes on l-126 are intended for through traffic continuing on I-26 westbound, with the lanes from the I-26 flyover landing to their night. In practice, many $\mathrm{l}-126$ drivers bound for the $\mathrm{I}-20$ ramps stay in the left lanes through the merge with the flyover and then cross over the I-26 traffic lanes to get to the I-20 exit ramps. In fact, initial model runs demonstrated that the preferred path forl-126 traffic exiting to I-20 was via the left lanes because of their higher speeds. In order to force I-126 exiting traffic to use the right auxiliary ramp as directed, a full tum movement prohibition was set in the model's project settings which prevented the movement of vehic les from the left lanes of $I-126$ to the $\mathrm{l}-20$ exit ramps. When this path prohibition was implemented, all I-126 traffic destined forl-20 used the auxiliary ramp. As a result, disruption caused from lane weaving signific antly decreased and speeds for all lanes except the right lane a ctually increased.

Stantec

Figure 5. I-26/I-126 Merge Approac hing the I-20 Interc hange

As field observation and observed travel speeds make clear, a full path prohibition preventing I-126 traffic from approaching l-20 exit ramps from the left is not reflective of what occurs at this location. Therefore a method to direct some l-126 exiting traffic to use the right a uxilia ry ramp while others continue to weave over from the left lanes was devised. This method involved extracting trips originating from I-126 to I-20 from the larger trip tables and transfeming them into two new exclusive trip tables named User A or User B. User B trips are prohibited from using the left lanes a nd crossing over, while User A trips use the left lanes, as it is the preferred fasterfree-flow path. User A trips therefore weave across the incoming $\mathrm{I}-26$ traffic lanes to get to the exit ramps for l-20, consequently creating the disruption and slowdown in this section observed in the travel time data. The numbertrips in the User A and User B matric es were adjusted to determine what proportion of total I-126 trips should be in each matrix to effectively reflect the ramp counts on the auxiliary ramp and the level of disuption required to lower speeds and create backup queues asobserved in the field notes. The number of User A trips and User B trips was ultimately set evenly, with the same number trips in both matrices.

The second factoraffecting the weaving in this section relates to the traffic entering from the Bush River Road entrance ramp. This traffic merges first with the I-126 traffic on the right side ramp and then, unless bound for the immediate $\mathrm{I}-20$ eastbound ramp, must weave quickly into the center a nd left lanesto continue on I-26 westbound. However, based a comparison of ramp counts, not enough traffic was using this ramp and making this movement. In the model network, Bush River Road connec ts to both I-26 and I-20, and it appeared that too much of the traffic generated between the two interstates was directed toward $\mathrm{I}-20$. With less traffic merging and weaving onto $\mathrm{I}-26$ from the right, the disruption that was observed in the field was not being captured in the model. To encourage more local traffic on Bush River Road to use the ramp at l-26 as opposed to the I-20 ramp to the west, a lower free-flow speed was set for Bush River Road between the two interstates. A lowerfree flow speed may in fact be justified given the presence of local streets and driveways that are not in the model. This adjustment effectively inc reased the ramp traffic at l-26. As expected, this additional ramp traffic inc reased the overall disruption observed in this section asit merged and weaved into this section of I26.

The third and final factor regardslane speeds in this section in general. TransModeler includes va riable speed adjustments per lane position on multi-la ne highways, with left lane traffic traveling fastest. As the number of lanes in a segment increases, the variance between the speeds from the left lanes to the right lanes increases. Being one of the few 5-lane sections in the network, the speed bias for the left lanes in this section was significant, with the speed of the far left lane set six percent higher than the average link speed set at 55 mph forthis section. However, given that the presence of five lanes in this location is due to the merging of the $I-126$ and $I-26$ lanes and a right auxiliary lane, the disparity between lane speeds here should not be so pronounced. Further, a portion of the traffic in the left lanes is in fact trying to weave through the center lanes to the right lanes, which reduces the potential for higher speeds.

Having made the described adjustments for these three factors, link speeds dropped to the levelsobserved in the speed data and backup queues began to form on both the I26 flyover and I-126 towards Colonial Life Boulevard.

3.2 CALBRATION CRIERIA

The criteria used to confirm that the simulation models have been suffic iently calibrated were taken from the FHWA's Traffic Analysis Toolbox Volume III: Guidelinesfor Applying Traffic Mic rosimulation Modeling Software, J uly 2004 (FHWA Publication No. FHWA-HRT-04-040). The spec ific criteria, which were originally developed by The Wisc onsin Department of Transportation, are found in Table 4 on page 64 of that document. The criteria consist of three general metrics: 1) traffic flow, 2) travel times, and 3) visual a udits. The first two metric s are quantifiable based on observed data and model output while the third metric is based on a visual audit to the "a nalyst's satisfaction."

Aseach mic rosimulation run incorporates random seeds to reflect the daily variance in traffic conditions, multiple simulations runs of each model scenario are performed, with their output statistic saveraged to provide mean statistics for comparison to observed values. For comparing traffic flow and travel speeds, the FHWA Toolbox Guidelines, Appendix B: Confidence Intervals,

Stantec
wasconsulted to establish the proper number of simulations required to ensure that the mean statistics taken from the model are within an acceptable confidence level of the true mean. Based on the standard deviation of a sample of link speeds and link flows from model output, it was determined that an average of ten (10) model runs would be suffic ient to ensure that the mean model speeds and traffic flows are within a single standard deviation of the true mean at the 95% confidence level. This has a practic al implication in that the minimum computer processing time foreach 90 minute simulation (including the 30 -minute preload period), is approximately 10-12 minutes. Therefore developing output statistics for a single model sc enario based on 10 runs requires a pproximately two hours of processing time, in a ddition to any input adjustments and output processing.

3.2.1 Traffic Rows

To compare traffic flows, traffic counts from every mainline, ramp tube, and aggregate ramp TMC were compared to average traffic flows at the same locations for both AM and PM peak hour models. In addition to an overall comparison of total model flow to total count volume, the FHWA Guidelinescriteria divides flows into three volume groups, with separate criteria foreach. The criteria also includes the GEH statistic, which is computed as follows:

$$
G E H=\sqrt{ } \frac{(E-V)^{2}}{(E+V) / 2}
$$

Where:
$E=$ model estimated volume
$V=$ field count
A total of 277 count locations were compared. Table 3 presents the calibration targets and flow statistic sfrom the AM and PM peak hour models. As Table 3 shows, the flow statistic s were within the range of criteria targets for each volume category, with one exception. In the PM peak hour, the only 83% of links with counts over 2,700 vehic les per hour were within 400 of the count, one link short of the 85% target. However, all but one link in this volume class was within 15% of its respective count volume. The total flow to count ratio is slightly higher than counts in both the AM and PM peak periods, but within the target five percent (5\%) threshold. The target threshold of total links meeting a maximum GEH statistic less than five (5) was also met for both the AM and PM models. A second criteria forcumulative GEH underfour (4) could not be met, but was considered not relevant since the total flow to count thresholds were within the 5% thresholds.

Table 3. Traffic Fow Calibration Statistics

	Target	AM Peak Hr		PM Peak Hr	
Hourly Flows, Model Versus Observed		Total Links	\% of cases	Total Links	\% of cases
Individual Link Flows					
Within 15\%, for 700 for veh/h <Flow < 2700 veh/h	> 85\% of cases	171	92\%	169	89\%
Within 100 veh/h, for Flow < $700 \mathrm{veh} / \mathrm{h}$	> 85\% of cases	84	95\%	82	85\%
Within 400 veh/h, for Flow >2700 veh/h	> 85% of cases	22	91\%	24	83\%
Sum of All Links	Within 5% of sum of all link counts	277		277	
Sum of Link Flow			254,644		269,572
Sum of Counts			250,214		257,562
(Flow-Counts)/Counts			1.77\%		4.66\%
Links with GEH Statistic < 5	> 85\% of cases	250	90\%	239	86\%

3.2.2 Travel Speeds

The criteria for travel times in the FHWA Guidelines are a comparison of joumey travel times. Given the size of the network a nd the multitude of a vailable paths within it, travel times for specific paths were not measured in the model output. Instead, travel speeds were compared for each segment of the interstate and freeway comidors. Each segment between both system and service interchanges, for both directions were included. Table 4 presents a comparison of the total number of segments and the number of segments that were within the FHWA Guidelines criteria of fifteen percent (15%) of the observed travel speed. Both the AM and PM models meet the target threshold of 85% of segments within 15% of the observed speed.

Table 4. Interstate and Freeway Segments within 15% of Obsenved Travel Speeds

	AM Peak Hour		PM Peak Hour	
	Segments	Within 15\%	Segments	Within 15\%
I-26	30	25	30	27
I-20	32	30	32	32
I-77	26	26	26	23
I-126/SC 277	14	11	14	9
Total	102	92	102	91
85\% Target		90%		89%

3.2.3 Visual Audits

Visual audits were conducted by watching the model simulations live while refering to field notes of traffic conditions, including the location and length of bottlenecks and intersection queues. Given the size of the network, subjective interpretation of the field notes,(such as "very congested" and "traffic moves between $40-50 \mathrm{mph}$ "), and the FHWA Guidelinescriteria being "to analyst's satisfaction," the visual audit process was primarily based a consensus among the

Stantec

model developers and reviewers that conditions were generally within the expectations of a congested peak hour, as informed by the field notes and input from project leaders and the client. A memorandum of the field notes is included as AppendixA.

3.3 CORRIDOR STATISIICS

In addition to the calibration criteria, graphic al representations of the link flow and travel speed comparisons between observed data and model output were developed to show the fit of the model foreach comidor. Where mainline counts exist, the model flow is compared to the counts. Otherwise segment volumes are calculated by adding and subtracting ramp counts at each interc hange. This section is organized by interstate system with tables and coresponding graphs for mainline segment volumes, ramp volumes, and segment travel speeds.

3.3.1 I-26 Comidor Statistics

Table 5. I-26 Easthound Volume Comparison

1-26 Mainline Volume Calibration Summary		Eastbound								
			7:15-8:15 AM				4:45-5:45 PM			
\#	Location	$\begin{aligned} & \hline \text { Link } \\ & \text { ID } \end{aligned}$	Field Count	Calc. Volume	Model Output	GEH	Field Count	Calc. Volume	Model Output	GEH
1	west of Exit 91 (Columbia Ave)	3384		1,326	1,507			1,354	1,590	
2	Exit 91 to Exit 97 (Broad River Rd)	3376	1,984		2,170	4	1,821		2,103	6
3	Exit 97 to Exit 101 (Broad River Rd)	3365		3,126	3,333			2,314	2,677	
4	Exit 101 to Exit 102 (Lake Murray Blvd)	3353		3,782	4,103		3,435		3,296	2
5	Exit 102 to Exit 103 (Harbison Blvd)	3333		3,902	4,221			3,834	3,635	
6	Exit 103 to Exit 104 (Piney Grove Rd)	3324		4,436	4,673			4,205	4,052	
7	Exit I 104 to Exit 106 (St. Andrews Rd)	6369	5,597		5,432	2	4,690		4,633	1
8	Exit 106 to Exit 107 (1-20)	3284		7,377	7,141			5,662	5,575	
9	1-26 to I-26	3254	2,954		3,111	3	2,505		3,124	12
10	Exit 108 to Exit 110 (Sunset Blvd)	6370	3,628		3,414	4	4,029		3,919	2
11	Exit 110 to Exit 111 (Augusta Rd)	4281		3,512	3,287			4,072	3,887	
12	Exit 111 to Exit 113 (Edmund Hwy)	4267		4,262	3,938			4,423	4,331	
13	Exit 113 to Exit 115 (Charleston Hwy)	4255		4,189	3,823			4,144	3,991	
14	Exit 116 (I-77) to Exit 119 (Charleston Hwy)	1269		1,552	1,974			2,063	2,729	
15	southeast of Exit 119	1280	1,323		1,701	10	1,895		2,518	13

Stantec

Figure 6. I-26 Eastbound Volume Comparison: AM Peak Hour

Figure 7. I-26 Easthound Volume Comparison: PM Peak Hour

Stantec

Table 6. I-26 Westbound Volume Comparison

1-26 Mainline Volume Calibration Summary		Westbound								
			7:15-8:15 AM				4:45-5:45 PM			
\#	Location	$\begin{gathered} \hline \text { Link } \\ \text { ID } \\ \hline \end{gathered}$	Field Count	Calc. Volume	Model Output	GEH	Field Count	Calc. Volume	Model Output	GEH
1	west of Exit 91 (Columbia Ave)	3382		851	1,190			1,543	1,953	
2	Exit 91 to Exit 97 (Broad River Rd)	3369	1,389		1,574	5	2,114		2,499	8
3	Exit 97 to Exit 101 (Broad River Rd)	3363		1,381	1,892			2,292	3,702	
4	Exit 101 to Exit 102 (Lake Murray Blvd)	3346	2,700		2,405	6	4,679		4,679	0
5	Exit 102 to Exit 103 (Harbison Blvd)	3337		3,152	2,929			5,367	5,421	
6	Exit 103 to Exit 104 (Piney Grove Rd)	3322		2,849	3,405			5,097	5,961	
7	Exit I 104 to Exit 106 (St. Andrews Rd)	3304	3,514		3,722	3	5,623		6,186	7
8	Exit 106 to Exit 107 (I-20)	3285		3,788	4,642			5,380	7,286	
9	$\mathrm{l}-26$ to $\mathrm{I}-26$	3249	2,102		2,503	8	2,437		2,754	6
10	Exit 108 to Exit 110 (Sunset Blvd)	4294	3,700		3,593	2	3,578		3,977	6
11	Exit 110 to Exit 111 (Augusta Rd)	4283		3,700	3,574			3,578	3,883	
12	Exit 111 to Exit 113 (Edmund Hwy)	4265		3,700	4,095			3,578	4,514	
13	Exit 113 to Exit 115 (Charleston Hwy)	4253		3,700	3,950			3,578	4,502	
14	Exit 116 (I-77) to Exit 119 (Charleston Hwy)	1267		1,525	2,446			1,833	2,835	
15	southeast of Exit 119	1277	1,525		2,027	12	1,833		2,407	12

Figure 8. I-26 Westbound Volume Comparison: AM Peak Hour

Stantec

Figure 9. I-26 Westbound Volume Comparison: PM Peak Hour

Table 7. I-26 Ramp Volume Comparison

	1-26 Ramp Volume Calibration Summary		Eastbound								Westbound								
			7:15-8:15 AM				4:45-5:45 PM					7:15-8:15 AM				4:45-5:45 PM			
\#	Location	Link ID	Field Count	Model Output	GEH	Diff.	Field Count	Model Output	GEH	Diff.	Link ID	Field Count	Model Output	GEH	Diff.	Field Count	Model Output	GEH	Diff.
1	Exit 91 (Columbia Ave) off ramp	3383	113	116	0	3	82	83	0	1	3377	503	476	1	-27	721	683	1	-38
2	Exit 91 (Columbia Ave) on ramp	6299	771	794	1	23	549	582	1	33	3381	112	128	1	16	118	126	1	8
3	Exit 97 (Broad River Rd) off ramp	3375	119	111	1	-8	216	226	1	10	3366	457	470	1	13	1,240	1,272	1	32
4	Exit 97 (Broad River Rd) on ramp	5064	1,261	1,300	1	39	709	761	2	52	5046	178	172	0	-6	119	136	1	17
5	Exit 101 (Broad River Rd) off ramp (wb)	3361	127	114	1	-13	88	92	0	4	3357	362	386	1	24	661	707	2	46
6	Exit 101 (Broad River Rd) off ramp (eb)	3358	256	247	1	-9	117	119	0	2	3347	287	239	3	-48	401	426	1	25
7	Exit 101 (Broad River Rd) on ramp	3352	1,039	1,159	4	120	837	811	1	-26	3362	132	132	0	0	229	221	1	-8
8	Exit 102 (Lake Murray Blvd) off ramp (wb)	3354	288	295	0	7	193	199	0	6	3339	484	434	2	-50	606	622	1	16
9	Exit 102 (Lake Murray Blvd) off ramp (eb)	3343	312	338	1	26	193	204	1	11	3342	348	318	2	-30	351	403	3	52
10	Exit 102 (Lake Murray Blvd) on ramp	3336	720	786	2	66	757	753	0	-4	3349	276	244	2	-32	409	301	6	-108
11	Exit 103 (Harbison Blvd) off ramp	3211	105	164	5	59	372	316	3	-56	3326	472	597	5	125	800	875	3	75
12	Exit 103 (Harbison Blvd) on ramp	3328	639	640	0	1	857	741	4	-116	3242	158	122	3	-36	468	309	8	-159
13	Exit 104 (Piney Grove Rd) off ramp	3233	134	170	3	36	272	204	4	-68	3307	617	671	2	54	693	750	2	57
14	Exit 104 (Piney Grove Rd) on ramp	3311	906	950	1	44	780	745	1	-35	3321	251	391	8	140	413	571	7	158
15	Exit 106 (St. Andrews Rd) off ramp	3300	117	172	5	55	287	372		85	3286	697	725	1	28	470	583	5	113
16	Exit 106 (St. Andrews Rd) eb on / wb off ramp	3296	829	859	1	30	890	769	4	-121	3290	342	369	1	27	632	673	2	41
17	Exit 106 (St. Andrews Rd) on ramp	3282	1,120	1,093	1	-27	696	575	5	-121	3303	188	173	1	-15	256	175	6	-81
18	Exit 107 to wbl-20	3288	518	645	5	127	793	918	4	125	3279	419	500	4	81	1,016	1,424	12	408
19	Exit 107 to ebl-20	3278	1,410	1,472	2	62	1,366	1,229	4	-137	4316	619	545	3	-74	579	551	1	-28
20	Exit 107 from wbl-20	3274	790	706	3	-84	594	618	1	24	3281	1,122	1,059	2	-63	1,145	1,112	1	-33
21	Exit 107 from ebl-20	4322	1,203	1,244	1	41	677	980	11	303	4332	584	572	0	-12	574	674	4	100
22	Exit 108 (Bush River Rd) off ramp	51	324	450	6	126	340	506	8	166	6399	324	392	4	68	1,006	868	5	-138
23	Exit 108 (Bush River Rd) on ramp	3261	472	598	5	126	638	746	4	108	6402	332	392	3	60	828	576	10	-252
24	Exit 108 to/from l-126	6400	316	351	2	35	763	792	1	29	6398	589	631	2	42	280	309	2	29
25	Exit 110 (Sunset Blvd) off ramp	4297	818	818	0	0	783	883	3	100	4285	851	859	0	8	787	824	1	37
26	Exit 110 (Sunset Blvd) on ramp	4288	702	690	0	-12	826	839	0	13	4293	832	898	2	66	820	927	4	107
27	Exit 111 (Augusta Rd) off ramp (wb)	4280	185	254	5	69	342	400	3	58	4278	623	818	7	195	829	1,014	6	185
28	Exit 111 (Augusta Rd) on ramp (wb)	4268	425	413	1	-12	527	482	2	-45	6404	264	271	0	7	280	314	2	34
29	Exit 111 (Augusta Rd) off ramp (eb)	6406	247	312	4	65	351	372	1	21	4275	435	465	1	30	421	392	1	-29
30	Exit 111 (Augusta Rd) on ramp (eb)	4272	757	827	2	70	517	719	8	202	6405	511	513	0	2	375	439	3	64
31	Exit 113 (Edmund Hwy) off ramp	4266	782	770	0	-12	936	991	2	55	4262	675	657	1	-18	676	703	1	27
32	Exit 113 (Edmund Hwy) on ramp	5991	709	685	1	-24	657	645	0	-12	5996	858	821	1	-37	639	699	2	60
33	Exit 115 (Charleston Hwy) off ramp	1253	758	816	2	58	1,096	1,154	2	58	6420	193	221	2	28	113	183	6	70
34	Exit 115 (Charleston Hwy) on ramp (sb)	4823	76	70	1	-6	178	188	1	10	1251	235	252	1	17	299	368	4	69
35	Exit 115 (Charleston Hwy) on ramp (nb)	6412	85	73	1	-12	82	78	1	-5	4821	1,161	1,185	1	24	616	613	0	-3
36	Exit 116 to 1-77	1258	2,161	2,170	0	9	1,556	1,523	1	-33	4230	1,122	1,203	2	81	1,158	1,228	2	70
37	Exit 116 from l-77	6416	994	1,037	1	43	1,005	1,156	5	151	6415	1,574	1,512	2	-62	2,132	2,056	2	-76
38	Exit 119 (Charleston Hwy) off ramp	1273	285	333	3	48	249	302	3	53	1276	90	116	3	26	39	44	1	5
39	Exit 119 (Charleston Hwy) on ramp	1279	56	72	2	16	81	94	1	13	6017	494	553	3	59	401	469	3	68

Figure 10. I-26 Eastbound Ramp Volumes: AM Peak Hour

Figure 11. I-26 Easthound Ramp Volumes: PM Peak Hour

Figure 12. I-26 Westbound Ramp Volumes: AM Peak Hour

Figure 13. I-26 Westbound Ramp Volumes: PM Peak Hour

Table 8. I-26 Segment Speed Comparison

Segment	Location	Eastbound					Westbound				
		Segment	AM		PM		$\begin{gathered} \hline \text { Segment } \\ \hline \text { ID } \\ \hline \end{gathered}$	AM		PM	
		ID	INRIX	Model	INRIX	Model		INRIX	Model	INRIX	Model
1	west of Exit 91 (Columbia Ave)	4801	71	70	70	70	4796	68	71	70	69
2	Exit 91 to Exit 97 (Broad River Rd)	4787	70	67	71	67	4774	69	70	70	69
3	Exit 97 to Exit 101 (Broad River Rd)	4768	68	64	69	66	4762	68	69	68	54
4	Exit 101 to Exit 102 (Lake Murray Blvd)	4748	54	59	65	62	4741	64	66	64	63
5	Exit 102 to Exit 103 (Harbison Blvd)	4720	44	60	63	62	4726	63	65	62	58
6	Exit 103 to Exit 104 (Piney Grove Rd)	4707	49	60	63	62	4701	63	64	59	49
7	Exit I 104 to Exit 106 (St. Andrews Rd)	4669	53	57	60	61	8551	62	62	52	49
8	Exit 106 to Exit 107 (1-20)	4649	52	42	56	48	4651	58	48	32	29
9	1-26 to l-26	6186	59	57	58	56	4604	57	48	31	31
10	Exit 108 to Exit 110 (Sunset Blvd)	6177	60	63	59	62	8554	61	58	45	57
11	Exit 110 to Exit 111 (Augusta Rd)	6152	60	65	62	63	6158	61	65	61	64
12	Exit 111 to Exit 113 (Edmund Hwy)	6134	61	63	64	62	6127	60	62	60	61
13	Exit 113 to Exit 115 (Charleston Hwy)	6114	61	63	62	62	6108	61	60	62	60
14	Exit 116 to Exit 119 (Charleston Hwy)	1548	64	63	63	62	1544	64	60	64	58
15	southeast of Exit 119	1565	64	69	64	67	1560	67	70	66	69

Figure 14. I-26 Eastbound Speeds: AM Peak Hour

Figure 15. I-26 Easthound Speeds: PM Peak Hour

Stantec

Figure 16. I-26 Westbound Speeds: AM Peak Hour

Figure 17. I-26 Westbound Speeds: PM Peak Hour

Stantec

Model Calibration

3.3.2 I-20 Conidor Statistics

Table 9. 1-20 Easthound Volume Comparison

1-20 Mainline Volume Calibration Summary		Eastbound								
			7:15-8:15 AM				4:45-5:45 PM			
\#	Location	$\begin{gathered} \text { Link } \\ \text { ID } \end{gathered}$	Field Count	Calc. Volume	Model Output	GEH	Field Count	Calc. Volume	Model Output	GEH
1	west of Exit 51 (Long Pond Rd)	6443		1,450	1,551			1,367	1,425	
2	Exit 51 to Exit 55 (S Lake Dr)	6461	2,620		2,516	2	1,678		1,853	4
	Exit 55 to Exit 58 (Augusta Rd)	2018		3,668	3,443			2,347	2,567	
4	Exit 58 to Exit 61 (Sunset Blvd)	2028		4,158	4,049			2,257	2,570	
5	Exit 61 to Exit 63 (Bush River Rd)	2051	5,131		4,927	3	3,144		3,390	4
6	Exit 63 to Exit 64 (1-26)	2068		4,734	4,405			3,228	3,875	
7	Exit 64 to Exit 65 (Broad River Rd)	4319		4,523	4,580			3,639	4,004	
8	Exit 65 to Exit 68 (Monticello Rd)	6463	5,174		5,094	1	4,391		4,466	1
9	Exit 68 to Exit 70 (Fairfield Rd)	4355		4,968	4,817			4,522	4,558	
10	Exit 70 to Exit 71 (N Main St)	4372	4,561		4,620	1	4,106		4,418	5
11	Exit 71 to Exit 72 (Farrow Rd)	4389	4,340		4,274	1	4,132		4,210	1
12	Exit 72 to Exit 73 (SC 277)	4404		3,643	3,651			3,900	3,960	
13	Exit 73 to Exit 74 (Two Notch Rd)	4422		2,959	2,870			4,042	4,273	
14	Exit 74 to Exit 76 (1-77)	4435	2,241		2,171	1	3,242		3,402	3
15	Exit 76 to Exit 80 (Clemson Rd)	947		2,325	2,483			3,990	4,317	
16	Exit 80 to Exit 82 (Spear Creek Church Rd)	36		1,524	1,713			2,840	3,203	
17	east of Exit 82	981	1,114		1,203	3	2,390		2,469	2

Figure 18. 1-20 Easthound Volume Comparison: AM Peak Hour

Figure 19. I-20 Eastbound Volume Comparison: PM Peak Hour

Stantec

Model Calibration

Table 10. I-20 Westbound Volume Comparison

1-20 Mainline Volume Calibration Summary		Westbound								
			7:15-8:15 AM				4:45-5:45 PM			
\#	Location	$\begin{gathered} \hline \text { Link } \\ \text { ID } \\ \hline \end{gathered}$	Field Count	Calc. Volume	Model Output	GEH	Field Count	Calc. Volume	Model Output	GEH
1	west of Exit 51 (Long Pond Rd)	1987		1,008	1,108			2,024	1,647	
2	Exit 51 to Exit 55 (S Lake Dr)	2000	1,219		1,348	4	2,167		2,335	4
3	Exit 55 to Exit 58 (Augusta Rd)	2016		2,153	1,827			2,815	3,308	
4	Exit 58 to Exit 61 (Sunset Blvd)	2033		1,237	1,983			3,422	3,568	
5	Exit 61 to Exit 63 (Bush River Rd)	2049	2,618		2,857	5	4,558		4,718	2
6	Exit 63 to Exit 64 (1-26)	2064		1,919	3,061			3,924	4,878	
7	Exit 64 to Exit 65 (Broad River Rd)	4337		4,151	3,695			4,637	4,246	
8	Exit 65 to Exit 68 (Monticello Rd)	4347	4,580		4,629	1	4,884		5,427	8
9	Exit 68 to Exit 70 (Fairfield Rd)	4357		5,838	4,576			5,749	5,071	
10	Exit 70 to Exit 71 (N Main St)	4362	4,318		4,395	1	4,731		5,005	4
11	Exit 71 to Exit 72 (Farrow Rd)	4383	4,246		4,215	0	4,197		4,680	7
12	Exit 72 to Exit 73 (SC 277)	4399		4,246	4,049			4,197	4,170	
13	Exit 73 to Exit 74 (Two Notch Rd)	4409		3,738	4,375			2,795	3,416	
14	Exit 74 to Exit 76 (1-77)	4429	3,738		3,684	1	2,795		2,888	2
15	Exit 76 to Exit 80 (Clemson Rd)	943		3,738	4,561			2,795	2,917	
16	Exit 80 to Exit 82 (Spear Creek Church Rd)	968		3,738	3,679			2,795	2,247	
17	east of Exit 82	971	2,763		2,850	2	1,580		1,763	4

Figure 20. 1-20 Westbound Volume Comparison: AM Peak Hour

Figure 21. I-20 Westbound Volume Comparison: PM Peak Hour

Stantec

Table 11. I-20 Ramp Volume Comparison

	1-20 Ramp Volume Calibration Summary		Eastbound								Westbound								
			7:15-8:15 AM				4:45-5:45 PM					7:15-8:15 AM				4:45-5:45 PM			
\#	Location	Link ID	Field Count	Model Output	GEH	Diff.	Field Count	Model Output	GEH	Diff.	Link ID	Field Count	Model Output	GEH	Diff.	$\begin{aligned} & \hline \text { Field } \\ & \text { Count } \end{aligned}$	Model Output	GEH	Diff.
1	Exit 51 (Long Pond Rd) off ramp	1996	134	169	3	35	156	173	1	17	2003	379	375	0	-4	897	826	2	-71
2	Exit 51 (Long Pond Rd) on ramp	1998	1,304	1,134	5	-170	467	542	3	75	1991	138	158	2	20	173	201	2	28
3	Exit 55 off ramp (S Lake Dr) (nb)	2012	251	239	1	-12	199	209	1	10	2015	309	300	0	-9	452	430	1	-22
4	Exit 55 on ramp (S Lake Dr) (sb)										6380	370	364	0	-6	774	803	1	29
5	Exit 55 (S Lake Dr) on ramp	5004	1,299	1,251	1	-48	868	909	1	41	2008	170	180	1	10	196	204	1	8
6	Exit 58 (Augusta Rd) off ramp	2023	458	467	0	9	516	558	2	42	2034	487	455	1	-32	762	793	1	31
7	Exit 58 (Augusta Rd) on ramp	2027	1,318	1,233	2	-85	478	540	3	62	2019	308	353	2	45	605	623	1	18
8	Exit 61 (Sunset Blvd) off ramp	2041	864	812	2	-52	315	400	5	85	2050	1,104	1,169	2	65	1,737	1,646	2	-91
9	Exit 61 (Sunset Blvd) on ramp (wb)	2045	674	650	1	-24	493	478	1	-15	2038	191	194	0	3	355	361	0	6
10	Exit 61 (Sunset Blvd) on ramp (eb)	2036	1,163	1,053	3	-110	709	722	0	13	2035	138	139	0	1	209	219	1	10
11	Exit 63 (Bush River Rd) off ramp	2055	863	790	3	-73	684	563	5	-121	2066	449	588	6	139	460	835	15	375
12	Exit 63 (Bush River Rd) on ramp	2067	99	80	2	-19	176	177	0	1	2056	342	383	2	41	840	666	6	-174
13	Exit 63 (Bush River Rd) on ramp (eb)	2058	367	237	7	-130	592	860	10	268									
14	Exit 64 from ebl-26	3278	1,410	1,472	2	62	1,366	1,229	4	-137	3288	518	645	5	127	793	918	4	125
15	Exit 64 from wbl-26	4316	619	545	3	-74	579	551	1	-28	3279	419	500	4	81	1,016	1,424	12	408
16	Exit 64 to ebl-26	4322	1,203	1,244	1	41	677	980	11	303	3274	790	706	3	-84	594	618	1	24
17	Exit 64 to wbl-26	4332	584	572	0	-12	574	674	4	100	3281	1,122	1,059	2	-63	1,145	1,112	1	-33
18	Exit 65 (Broad River Rd) off ramp	4341	363	381	1	18	266	464	10	198	4346	1,210	1,131	2	-79	1,556	1,574	0	18
19	Exit 65 (Broad River Rd) on ramp	4344	1,014	1,078	2	64	1,018	1,008	0	-10	4339	307	272	2	-35	284	430	8	146
20	Exit 68 (Monticello Rd) off ramp	4350	736	781	2	45	478	554	3	76	4356	441	458	1	17	358	409	3	51
21	Exit 68 (Monticello Rd) on ramp	5159	530	450	4	-80	609	568	2	-41	4348	484	506		22	776	740	1	-36
22	Exit 70 (Fairfield Rd) off ramp	4366	639	629	0	-10	426	465	2	39	4360	475	497	1	22	373	378	0	5
23	Exit 70 (Fairfield Rd) on ramp	4371	451	461	0	10	302	325	1	23	4363	264	270	0	6	230	298	4	68
24	Exit 71 (N Main St) off ramp	4380	513	556	2	43	494	505	1	11	4384	464	463	0	-1	232	247	1	15
25	Exit 71 (N Main St) on ramp	4388	240	247	0	7	270	294	1	24	4376	647	669	1	22	516	559	2	43
26	Exit 72 (Farrow Rd) off ramp	4393	824	822	0	-2	415	455	2	40	4400	177	180	0	3	100	129	3	29
27	Exit 72 (Farrow Rd)on ramp	4403	127	230	8	103	183	212	2	29	4394	327	364	2	37	673	640	1	-33
28	Exit 73 to sb SC 277	4408	170	1	18	-169	132	103	3	-30	4410	1,829	1,749	2	-80	579	590	0	11
29	Exit 73 from sb SC 277										4412	1,477	1,369	3	-108	1,270	1,330	2	60
30	Exit 73 to nb SC 277	4417	1,256	1,227	1	-29	1,244	1,261	0	17									
31	Exit 73 from nb SC 277	4421	498	448	2	-50	1,839	1,642	5	-197	4416	96	77	2	-19	134	0	16	-134
32	Exit 74 (Two Notch Rd) off ramp	4424	859	836	1	-24	1,093	1,121	1	28	4430	272	259	1	-13	201	259	4	58
33	Exit 74 (Two Notch Rd) on ramp	4434	141	156	1	15	293	274	1	-19	4426	971	985	0	14	835	783	2	-52
34	Exit 76 to sbl-77	6387	631	407	10	-224	629	519	5	-110	6388	1,720	1,615	3	-105	938	998	2	60
35	Exit 76 from sbl-77	4102	433	400	2	-33	467	478	0	11	6389	34	1	8	-33	56	1	10	-55
36	Exit 76 to nbl-77										938	1,778	1,749	1	-29	964	1,010	1	46
37	Exit 76 from nbl-77	4108	863	877	0	14	1,656	1,730	2	74	4107	557	488	3	-69	603	591	0	-12
	Exit 76A (Alpine Rd) off ramp	5264	733	698	1	-35	931	911	1	-20	944	220	217	0	-3	110	115	0	5
	Exit76A (Alpine Rd) on ramp	956	152	177	2	25	185	190	0	5	6396	699	567	5	-132	431	413	1	-18
38	Exit 80 (Clemson Rd) off ramp	945	958	916	1	-42	1,408	1,359	1	-49	969	270	281	1	11	184	189	0	5
39	Exit 80 (Clemson Rd) on ramp	39	157	160	0		258	258	,	0	960	1,258	1,272	0	14	865	898	1	33

Stantec

Figure 22. I-20 Easthound Ramp Volumes: AM Peak Hour

Figure 23. I-20 Easthound Ramp Volumes: PM Peak Hour

Figure 24. I-20 Westhound Ramp Volumes: AM Peak Hour

Figure 25. I-20 Westbound Ramp Volumes: PM Peak Hour

Table 12. l-20 Segment Speed Comparison

Segment	Location	Eastbound					Westbound				
		Segment	AM		PM		Segment	AM		PM	
		ID	INRIX	Model	INRIX	Model	ID	INRIX	Model	INRIX	Model
1	west of Exit 51 (Long Pond Rd)	8626		71	70	72	8627		71	70	72
2	Exit 51 to Exit 55 (S Lake Dr)	8657		62	70	64	2767		62	70	64
3	Exit 55 to Exit 58 (Augusta Rd)	2793	53	49	67	61	2790	53	49	67	61
4	Exit 58 to Exit 61 (Sunset Blvd)	2805	61	55	67	62	2816	61	55	67	62
5	Exit 61 to Exit 63 (Bush River Rd)	8542	62	61	65	64	2838	62	61	65	64
6	Exit 63 to Exit 64 (1-26)	2863	58	63	61	62	2859	58	63	61	62
7	Exit 64 to Exit 65 (Broad River Rd)	6207	60	61	60	62	6230	60	61	60	62
8	Exit 65 to Exit 68 (Monticello Rd)	6243	63	59	64	61	8658	63	59	64	61
9	Exit 68 to Exit 70 (Fairfield Rd)	6259	62	61	63	61	6265	62	61	63	61
10	Exit 70 to Exit 71 (N Main St)	6285	62	61	64	62	6273	62	61	64	62
11	Exit 71 to Exit 72 (Farrow Rd)	8548	60	61	62	63	8547	60	61	62	63
12	Exit 73 (SC 277) to Exit 74 (Two Notch Rd)	6351	63	65	63	59	6334	63	65	63	59
13	Exit 74 to Exit 76 (1-77)	6374	63	65	63	64	6365	63	65	63	64
14	Exit 76 to Exit 80 (Clemson Rd)	8643	62	65	59	61	1059	62	65	59	61
15	Exit 80 to Exit 82 (Spear Creek Church Rd)	1112	63	66	63	63	1098	63	66	63	63
16	east of Exit 82	8645	67	72	69	67	1106	67	72	69	67

Figure 26. I-20 Eastbound Speeds: AM Peak Hour

Stantec

Figure 27. I-20 Easthound Speeds: PM Peak Hour

Figure 28. I-20 Westbound Speeds: AM Peak Hour

Stantec

Figure 29. I-20 Westbound Speeds: PM Peak Hour

3.3.3 I-77 Comidor Statistics

Table 13. I-77 Northbound Volume Comparison

1-77 Mainline Volume Calibration Summary		Northbound								
			7:15-8:15 AM				4:45-5:45 PM			
\#	Location	$\begin{gathered} \text { Link } \\ \text { ID } \end{gathered}$	Field Count	Calc. Volume	Model Output	GEH	Field Count	Calc. Volume	Model Output	GEH
1	north of Exit 22 (Killian Rd)	3879	1,874		1,945	2	2,742		3,092	6
2	Exit 22 to Exit 19 (Farrow Rd)	3971		2,495	2,641			4,351	4,824	
4	Exit 18 (SC 277) to Exit 17 (Two Notch Road)	4049		2,106	2,156			2,775	2,881	
5	Exit 17 to Exit 16 (1-20)	4083	2,202		2,304	2	2,889		3,052	3
6	Exit 16 to Exit 15 (Percival Rd)	4105		3,016	3,099			4,770	5,011	
7	Exit 15 to Exit 13 (Decker Blvd)	4126		3,041	3,079			4,774	4,918	
8	Exit 15 to Exit 12 (Forest Dr)	4128		3,630	3,695			5,471	5,645	
9	Exit 12 to Exit 10 (Fort Jackson)	4139		3,543	3,932			4,830	5,033	
10	Exit 10 to Exit 9 (Garners Ferry Rd / Leesburg Rd)	4155		3,657	3,818			4,040	4,455	
11	Exit 9 to Exit 6 (Shop Rd)	4173	2,453		2,723	5	3,203		3,595	7
12	Exit 6 to Exit 5 (Bluff Rd)	4190		3,248	3,427			3,815	3,874	
13	Exit 5 to Exit 2 (12 St. Extension)	4205		3,895	4,217			3,771	3,853	
14	Exit 2 to Exit 1 (1-26)	4217		4,094	4,520			3,395	3,416	

Stantec

Figure 30. I-77 Northbound Volume Comparison: AM Peak Hour

Figure 31. I-77 Northbound Volume Comparison: PM Peak Hour

Stantec

Model Calibration

Table 14. I-77 Southbound Volume Comparison

1-77 Mainline Volume Calibration Summary		Southbound								
	Location		7:15-8:15 AM				4:45-5:45 PM			
\#		$\begin{gathered} \hline \text { Link } \\ \text { ID } \end{gathered}$	Field Count	Calc. Volume	Model Output	GEH	Field Count	Calc. Volume	Model Output	GEH
1	north of Exit 22 (Killian Rd)	3864	3,208		3,490	5	2,254		2,650	8
2	Exit 22 to Exit 19 (Farrow Rd)	3968		3,688	5,220			3,036	3,550	
4	Exit 18 (SC 277) to Exit 17 (Two Notch Road)	4053		2,797	2,531			1,834	2,465	
5	Exit 17 to Exit 16 (1-20)	6375	3,010		2,899	2	2,367		2,609	5
6	Exit 16 to Exit 15 (Percival Rd)	4110		2,776	4,499			3,026	3,648	
7	Exit 15 to Exit 13 (Decker Blvd)	3861		4,982	4,092			3,092	3,586	
8	Exit 15 to Exit 12 (Forest Dr)	4124		6,556	4,697			5,224	4,246	
9	Exit 12 to Exit 10 (Fort Jackson)	4143		6,556	4,574			5,224	4,399	
10	Exit 10 to Exit 9 (Garners Ferry Rd / Leesburg Rd)	4158		3,323	4,070			2,771	3,909	
11	Exit 9 to Exit 6 (Shop Rd)	6372	3,323		3,500	3	2,771		3,139	7
12	Exit 6 to Exit 5 (Bluff Rd)	4192		3,323	3,855			2,771	3,757	
13	Exit 5 to Exit 2 (12 St. Extension)	4204		3,323	3,875			2,771	4,716	
14	Exit 2 to Exit 1 (1-26)	4222		3,323	3,272			2,771	4,533	

Figure 32. I-77 Southbound Volume Comparison: AM Peak Hour

Figure 33. I-77 Southbound Volume Comparison: PM Peak Hour

Stantec

Table 15. I-77 Ramp Volume Comparison

	I-77 Ramp Volume Calibration Summary		Northbound								Southbound								
			7:15-8:15 AM				4:45-5:45 PM					7:15-8:15 AM				4:45-5:45 PM			
\#	Location	Link ID	Field Count	Model Output	GEH	Diff.	Field Count	Model Output	GEH	Diff.	Link ID	Field Count	Model Output	GEH	Diff.	Field Count	Model Output	GEH	Diff.
1	Exit 22 (Killian Rd) off ramp	3972	784	781	0	-3	1,877	1,808	2	-69	3918	204	217	1	13	581	588	0	7
2	Exit 22 (killian Rd) on ramp	3956	163	143	2	-20	268	226	3	-42	3967	2,136	2,031	2	-105	1,801	1,467	8	-334
3	Exit 19 (Farrow Rd) off ramp	4044	759	732	1	-27	512	513	0	1	4021	292	286	0	-6	166	168	0	2
4	Exit 19 (Farrow) on ramp	4006	79	81	0	2	163	151	1	-12	4515	445	564	5	119	651	632	1	-19
5	Exit 18 from nb SC 277 /to sb SC 277	4031	1,162	1,179	1	17	2,348	2,475	3	127	6436	2,723	2,837	2	114	1,286	1,362	2	76
6	Exit 17 (Two Notch Road) off ramp	4084	360	378	1	18	408	452	2	44	4068	290	259	2	-31	252	261	1	9
7	Exit 17 (Two Notch Road) on ramp	4074	264	254	1	-10	294	295	0	1	4078	642	638	0	-4	373	397	1	24
8	Exit 16 to $\mathrm{wbl}-20$	4107	557	488	3	-69	603	591	0	-12	6389	34	1	8	-33	56	1	10	-55
9	Exit 16 to ebl-20	4108	863	877	0	14	1,656	1,730	2	74	4102	433	400	2	-33	467	478	0	11
10	Exit 16 from wbl-20	4092	606	583	1	-23	378	370	0	-8	6388	1,720	1,615	3	-105	938	998	2	60
11	Exit 16 from ebl-20										6387	631	407	10	-224	629	519	5	-110
12	Exit 15 (Percival Rd) off ramp	4125	301	318	1	17	370	378	0	8	4114	668	658	0	-11	355	366	1	11
13	Exit 15 (Percival Rd) off ramp (eb)	4121	70	48	3	-22	96	82	1	-14									
14	Exit 15 (Percival Rd) on ramp	4111	346	354	0	8	462	488	1	26	3860	287	285	0	-2	307	317	1	10
15	Exit 13 (Decker Blvd) nb off / sb on ramp	4127	589	594	0	5	697	709	0	12	4123	621	625	0	4	650	647	0	-3
16	Exit 12 (Forest Dr) off ramp	4140	568	530	2	-38	793	793	0	0	4142	977	948	1	-29	774	811	1	37
17	Exit 12 (Forest Dr) on ramp	4130	317	326	1	9	1,372	1,409	1	37	3303	188	173	1	-15	256	175	6	-81
18	Exit 10 (Fort Jackson) off ramp	4156	495	459	2	-36	260	297	2	37	4151	965	839	4	-126	781	810	1	29
19	Exit 10 (Fort Jackson) on ramp	4145	582	628	2	46	901	929	1	28	4157	320	353	2	33	348	372	1	24
20	Exit 9 (Leesburg Rd) off ramp	6429	154	185	2	31	315	341	1	26	4163	800	837	1	37	1,130	1,015	4	-115
21	Exit 9 (Leesburg Rd) on ramp	4161	1,684	1,626	1	-58	1,154	1,161	0	7	4171	290	224	4	-66	150	133	1	-17
22	Exit 9 (Garners Ferry Rd) off ramp	6426	659	672	1	13	430	454	1	24	4169	540	484	2	-56	452	447	0	-5
23	Exit 9 (Garners Ferry Rd) on ramp	6427	333	356	1	23	428	481	2	53	4175	529	575	2	46	628	611	1	-17
24	Exit 6 (Shop Rd) off ramp	4189	803	862	2	59	768	832	2	64	4181	481	443	2	-38	264	287	1	23
25	Exit 6 (Shop Rd) wb off ramp/on ramp	4185	132	109	2	-23	89	2	13	-87	4183	694	750	2	56	797	771	1	-26
26	Exit 6 (Shop Rd) on ramp	4178	140	141	0	1	245	208	2	-37	6421	151	72	7	-79	190	136	4	-54
27	Exit 5 (Bluff Rd) off ramp	4206	961	1,051	3	90	421	484	3	63	4193	575	557	,	-18	196	225	2	29
28	Exit 5 (Bluff Rd) on ramp (nb)	4197	79	81	0	2	131	126	0	-5	4199	205	242	2	37	402	460	3	58
29	Exit 5 (Bluff Rd) on ramp (sb)	4202	235	214	1	-21	334	378	2	44	4201	287	363	4	76	643	719	3	76
30	Exit 2 (12 St. Extension) off ramp	4218	527	605	3	78	199	195	0	-4	4210	751	728	1	-23	547	543	0	-4
31	Exit 2 (12 St. Extension) on ramp	4213	328	355	1	27	575	599	1	24	4221	144	184	3	40	379	398	1	19
32	Exit 1 from/to wbl-26	4230	1,122	1,203	2	81	1,158	1,228	2	70	6416	994	1,037	1	43	1,005	1,156	5	151
33	Exit 1 from/to ebl-26	1258	2,161	2,170	0	9	1,556	1,523	1	-33	6415	1,574	1,512	2	-62	2,132	2,056	2	-76
34	Exit 1 from/to Fish Hatchery Rd	4246	1,171	1,199	1	28	644	650	0	6	6414	652	712	2	60	1,155	1,308	4	153

Stantec

Figure 34. I-77 Northbound Ramp Volumes: AM Peak Hour

Figure 35. I-77 Northbound Ramp Volumes: PM Peak Hour

Figure 36. Southbound Ramp Volumes: AM Peak Hour

Figure 37. Southbound Ramp Volumes: PM Peak Hour

Model Calibration

Table 16. I-77 Segment Speed Comparison

Segment	Location	Northbound					Southbound				
		Segment	AM		PM		$\begin{gathered} \hline \text { Segment } \\ \hline \text { ID } \end{gathered}$	AM		PM	
		ID	INRIX	Model	INRIX	Model		INRIX	Model	INRIX	Model
1	north of Exit 22 (Killian Rd)	5586	67	71	68	70	5561	70	70	70	71
2	Exit 22 to Exit 19 (Farrow Rd)	5712	67	71	63	62	5707	68	61	68	68
3	Exit 18 (SC 277) to Exit 17 (Two Notch Rd)	5762	64	66	65	54	5829	66	64	65	63
5	Exit 17 to Exit 16 (I-20)	5869	64	63	65	61	8558	63	63	63	63
6	Exit 16 to Exit 15 (Percival Rd)	5899	61	63	62	52	5904	63	57	63	62
7	Exit 15 to Exit 13 (Decker Blvd)	5925	62	65	64	61	5557	64	63	64	63
8	Exit 13 to Exit 12 (Forest Dr)	5931	62	62	63	54	5922	62	56	63	59
9	Exit 12 to Exit 10 (Fort Jackson)	5946	63	63	64	59	5952	63	61	63	60
10	Exit 10 to Exit 9 (Garners Ferry Rd / Leesburg Rd)	5976	63	62	62	45	5969	63	63	65	61
11	Exit 9 to Exit 6 (Shop Rd)	8556	62	64	64	63	6002	65	64	64	65
12	Exit 6 to Exit 5 (Bluff Rd)	6020	60	64	63	63	6022	61	64	61	63
13	Exit 5 to Exit 2 (12 St. Extension)	6042	64	66	67	68	6038	65	67	63	65
14	Exit 2 to Exit 1 (1-26)	6060	64	57	66	68	6065	63	68	62	64

Figure 38. I-77 Northbound Speeds: AM Peak Hour

Figure 39. I-77 Northbound Speeds: PM Peak Hour

Stantec

Figure 40. I-77 Southbound Speeds: AM Peak Hour

Figure 41. I-77 Southbound Speeds: PM Peak Hour

Stantec

3.3.4 I-126 / SC-277 Comidor Statistics

Table 17. I-126 / SC-277 Eastbound Volume Comparison

I-126 / SC 277 Volume Summary		Eastbound								
			7:15-8:15 AM				4:45-5:45 PM			
\#	Location	$\begin{gathered} \text { Link } \\ \text { ID } \end{gathered}$	Field Count	Calc. Volume	Model Output	GEH	Field Count	Calc. Volume	Model Output	GEH
1	I-126 from I-26 to Colonial Life Blvd	3253	3,970		3,959	0	1,981		2,174	4
2	I-126 from Colonial Life Blvd to Greystone Blvd	3231		5,032	5,028			2,569	2,750	
3	I-126 from Greystone Blvd to Huger St	6377	5,295		4,960	5	2,747		2,579	3
1	SC 277 from Sunset Dr to Farrow Rd	4482		890	874			3,256	3,015	
2	SC 277 from Farrow Rd to Fontaine Rd	4472	1,040		968	2	3,753		3,525	4
3	SC 277 from Fontaine Rd to I-20	4423		1,208	1,124			4,149	3,918	
4	SC 277 from I-20 to Parklane Rd	4415		1,870	1,800			3,420	3,498	

Stantec

Figure 42. I-126 / SC-277 Eastbound Volume Comparison: AM Peak Hour

Figure 43. I-126 / SC-277 Eastbound Volume Comparison: PM Peak Hour

Stantec

Model Calibration

Table 18. I-126 / SC-277 Westhound Volume Comparison

I-126 / SC 277 Volume Calibration Summary		Westbound								
			7:15-8:15 AM				4:45-5:45 PM			
\#	Location	$\begin{gathered} \hline \text { Link } \\ \text { ID } \end{gathered}$	Field Count	Calc. Volume	Model Output	GEH	Field Count	Calc. Volume	Model Output	GEH
1	I-126 from I-26 to Colonial Life Blvd	3248	876		970	3	2,702		3,228	10
2	I-126 from Colonial Life Blvd to Greystone Blvd	3236		-270	1,914			4,326	5,441	
3	I-126 from Greystone Blvd to Huger St	3220	2,008		2,001	0	4,961		5,171	3
1	SC 277 from Sunset Dr to Farrow Rd	4486		3,886	3,354			1,351	1,366	
2	SC 277 from Farrow Rd to Fontaine Rd	4470	3,886		3,634	4	1,351		1,418	2
3	SC 277 from Fontaine Rd to I-20	4458		3,886	3,977			1,351	1,701	
4	SC 277 from I-20 to Parklane Rd	4453		3,886	3,681			1,351	2,325	

Figure 44. I-126 / SC-277 Westbound Volume Comparison: AM Peak Hour

Figure 45. I-126 / SC-277 Westbound Volume Comparison: PM Peak Hour

Stantec

Table 19. I-126 / SC-277 Ramp Volume Comparison

	I-126 / SC 277 Ramp Volume Calibration Summary		Eastbound								Westbound								
			7:15-8:15 AM				4:45-5:45 PM					7:15-8:15 AM				4:45-5:45 PM			
\#	Location	Link ID	Field Count	Model Output	GEH	Diff.	Field Count	Model Output	GEH	Diff.	Link ID	Field Count	Model Output	GEH	Diff.	Field Count	Model Output	GEH	Diff.
1	from nbl-26 / to nbl-26 (side)	6398	589	631	2	42	280	309	2	29	6402	332	349	1	17	828	576	10	-252
2	to sbl-26	6400	316	351	2	35	763	792	1	29									
3	from / to Colonial Life Blvd	3239	473	502	1	29	308	282	2	-27	3243	200	224	2	24	812	870	2	58
4	Greystone Blvd off ramps	3232	588	550	2	-39	503	497	0	-6	3222	415	456	2	41	645	582	3	-63
5	Greystone Blvd on ramps	3224	530	531	0	1	535	471	3	-64	3235	321	360	2	39	634	708	3	74
1	Farrow Rd off ramps	4483	59	110	6	51	158	182	2	24	4477	546	475		-71	213	216	0	3
2	Farrow Rd on ramps	4479	209	203	0	-6	655	676	1	21	4485	183	239	4	56	121	170	4	49
3	Fontaine Rd off ramps	4473	183	177	0	-6	253	147	7	-106	4464	634	535	4	-100	399	439	2	40
4	Fontaine Rd on ramps	4459	351	342	0	-9	649	582	3	-68	4469	206	216	,	10	167	151	1	-16
5	to $\mathrm{l}-20 \mathrm{eb}$	4421	498	448	2	-50	1,839	1,642	5	-197									
6	to $1-20 \mathrm{wb}$	4416	96	77	2	-19	134	0	16	-134	4412	1,477	1,369	3	-108	1,270	1,330	2	60
7	from 1-20 eb	4417	1,256	1,227	1	-29	1,244	1,261	0	17	4408	170	1	18	-169	132	103	3	-30
8	from l-20 wb										4410	1,829	1,749	2	-80	579	590	0	11
9	Parklane Rd off ramps	4450	400	381	1	-19	428	469	2	41	4442	147	118	3	-29	151	162	1	11
10	Parklane Rd on ramps	4445	153	153	0	0	327	290	2	-38	4452	478	504	1	26	514	490	1	-24
11	to / from l-77 nb	4031	1,162	1,179	1	17	2,348	2,475	3	127	6436	2,723	2,837	2	114	1,286	1,362	2	76
12	Farrow Rd off / on ramps	4512	432	398	2	-34	914	867		-47	4515	445	564	5	119	651	632	1	-19

Figure 46. l-126 / SC-277 Eastbound Ramp Volumes: AM Peak Hour

Figure 47. I-126 / SC-277 Eastbound Ramp Volumes: PM Peak Hour

Model Calibration

Figure 48. I-126 / SC-277 Westbound Ramp Volumes: AM Peak Hour

Model Calibration

Figure 49. I-126 / SC-277 Westbound Ramp Volumes: PM Peak Hour

Model Calibration

Table 20. I-126 / SC-277 Segment Speed Comparison

Segment	Location	Eastbound					Westbound				
		Segment	AM		PM		$\begin{array}{\|c} \hline \text { Segment } \\ \hline \text { ID } \end{array}$	AM		PM	
		ID	INRIX	Model	INRIX	Model		INRIX	Model	INRIX	Model
1	I-126 from I-26 to Colonial Life Blvd	4594	62	63	65	67	4599	61	66	41	60
2	I-126 from Colonial Life Blvd to Greystone Blvd	4578	62	62	62	65	4587	61	67	48	61
3	I-126 from Greystone Blvd to Huger St	4563	51	62	55	66	4566	57	65	56	62
1	SC 277 from Sunset Dr to Farrow Rd	6434		64	50	56	6439		59	56	62
2	SC 277 from Farrow Rd to Fontaine Rd	8561		61	58	40	8562		54	63	61
3	SC 277 from Fontaine Rd to l-20	6355		59	60	46	6403		45	62	60
4	SC 277 from I-20 to Parklane Rd	6342		59	60	55	6396		32	61	53

Figure 50. I-126 / SC-277 Eastbound Speeds: AM Peak Hour

Stantec

Figure 51. I-126 / SC-277 Eastbound Speeds: PM Peak Hour

Figure 52. I-126 / SC-277 Westbound Speeds: AM Peak Hour

Stantec

Model Calibration

Figure 53. I-126 / SC-277 Westbound Speeds: PM Peak Hour

Stantec

APPENDIX A: EXISIING CONGESIION OBSERVATIONS

[^0]: $\% \mathrm{ffs}=$ Percent free flow speed ats $=$ Average travel speed

