

Noise Advisory Board Meeting #1

March 15, 2016

- Noise Advisory Board Goals & Objectives
- (1)(3) What is Noise and How is it Measured?
- Noise Data Collection Overview
- (1) 5 Determining if a Noise Wall Will Be Used

01 Project Overview

Project Team

Brian Klauk SCDOT Special Programs Manager

Heather Robbins
SCDOT
Director of
Environmental
Services

3 +
RSTATES

12 =

Notice of Intent (NOI) to prepare an EIS and Scoping (July 24, 2015) WE ARE HERE

Phase 2:

Compare alternatives and prepare a Draft EIS and a Final EIS

Phase 3:

Project Delivery

36 Months

We are here

	2015	2016	2017	2018
Begin project	March			
Field data collection	April			MM ()
Stakeholder meetings	April August			
Community meeting	May	:		
Notice of intent	July	:	445	
Public scoping meeting	September August	July		
Alternatives development	August		tember	
Reasonable alternatives			Fall/Winter	116
Funding feasibility			July	7 4
Publish Draft EIS		•		July
Final EIS & ROD		•		

O2 Noise Advisory Board Goals & Objectives

NAB Goals & Objectives

To provide...

Better **Understanding** of the noise evaluation process.

To provide...

Two-Way Communication

between the community and the Project Team.

То...

Review Outcome

of noise data collection.

03 What is noise and how is it measured?

What is noise?

» Noise is a vibration that causes pressure variations in air and water.

South Carolina Department of Transportation

Measuring Noise

» Special equipment is used to measure the noise levels at noise-sensitive sites throughout a project area.

Measuring Noise Continued

is measured in units called decibels (dBA)

Decibels

gives a scale for noise levels that are experienced or perceived by the human ear.

FHWA Noise Abatement Criteria & SCDOT Traffic Noise Abatement Policy

- » FHWA Noise Abatement Criteria
- » SCDOT Traffic Noise Abatement Policy

NOISE STANDARDS AND POLICIES

O4 Noise Data Collection Overview

Comparing Results to the FHWA Traffic Noise Model

Validation Required

to verify accuracy of noise models used to predict existing or future noise levels.

Validation Occurs

when existing highway traffic noise levels and predicted noise levels are within +/- three dBA of one another at all receptor sites.

Verified Accuracy

of the traffic noise model was achieved when existing traffic noise levels were measured and compared against TNM results.

Noise Measurement Locations

TNM Noise Model

Noise Results

Measurement Location	Leq(h) (dBA)		
	Measured	Predicted	Difference
A: East of Broad River Road off-ramp near Southland Log Homes	72.1	73.0	+0.9
B: East of Harbison Boulevard on-ramp near Love Chevrolet	71.3	72.0	+0.7
C: West of Piney Grove Road off-ramp near Country Walk Apartments	69.3	72.2	+2.9
D: West of Piney Grove on-ramp near 490 Jamil Road	68.0	69.3	+1.3
E: East of I-26 near Raintree Apartments	74.7	71.9	-2.8
F: West of I-26 near Stoney Creek Apartments	69.1	72.0	+2.9
G: East of I-126 near 164 Morninghill Drive	67.2	69.4	+2.2
H: Northeast of I-126 near Three Rivers Apartments	62.3	64.2	+1.9
I: West of Sunset Boulevard off-ramp near 198 East Medical Lane	67.8	70.8	+3.0
J: Southwest of Bush River Road off-ramp near Double Tree by Hilton	65.7	68.1	+2.4
K: North of I-20 near Briargate Condominiums	65.5	68.4	+2.9

 A total of 2,491 individual noise receptor sites were identified.

 Sites were within approximately 500 feet of the project centerline and were identified using parcel map information.

Next Steps

What happens if there is a Traffic Noise Impact?

How do Noise Walls Work?

- » Block the direct path of sound waves from the highway to adjacent residences
- » High enough and long enough to block line of sign between highway and residences
- » Important to remember that not all noise will be blocked or eliminated.

Determining if a Noise Wall Will be Used

Feasibility and Reasonability

"Feasibility"

is determined by physical and/or engineering constraints

Engineering Feasibility

Could a noise barrier feasibly be constructed on the site

Acoustic **Feasibility**

5 dBA reduction at 75% of impacted receptors for the noise abatement measure to be acoustically feasible

"Reasonability"

is based on several factors including:

Noise Reduction Design Goal

8 dBA must be achieved for 80% of those receptors determined to be in the first two building rows and considered benefited

Cost-effectiveness

SCDOT's costeffectiveness criteria

Opinion of benefited residents and owners

Feasibility Considerations

Right-of-way

Safety concerns

Buried utilities or utility relocation

Drainage impacts

Soil types or wetland areas

Reasonability

Noise Reduction

A reduction of 8 dBA must be achieved for 80% of those receptors determined to be in the first two

building rows and

considered benefited

Does it align with this criteria?

Guard rails, rub rail, utility relocation, etc. must be included in the cost

Noise Walls and the Public

Questions?

www.SCDOTCarolinaCrossroads.com

info@CarolinaCrossroadsSCDOT.com

1-800-601-8715

